Nonalcoholic Fatty Liver Disease (NAFLD) represents the leading cause of liver disease in developed countries but its diffusion is currently also emerging in Asian countries, in South America and in other developing countries. It is progressively becoming one of the main diseases responsible for hepatic insufficiency, hepatocarcinoma and the need for orthotopic liver transplantation. NAFLD is linked with metabolic syndrome in a close and bidirectional relationship. To date, NAFLD is a diagnosis of exclusion, and liver biopsy is the gold standard for diagnosis. NAFLD pathogenesis is complex and multifactorial, mainly involving genetic, metabolic and environmental factors. New concepts are constantly arising in the literature promising new diagnostic and therapeutic tools. One of the challenges will be to better characterize not only NAFLD development but overall NAFLD progression, in order to better identify NAFLD patients at higher risk of metabolic, cardiovascular and neoplastic complications. This review analyses NAFLD epidemiology and the different prevalence of the disease in distinct groups, particularly according to sex, age, body mass index, type 2 diabetes and dyslipidemia. Furthermore, the work expands on the pathophysiology of NAFLD, examining multiple-hit pathogenesis and the role of different factors in hepatic steatosis development and progression: genetics, metabolic factors and insulin resistance, diet, adipose tissue, gut microbiota, iron deposits, bile acids and circadian clock. In conclusion, the current available therapies for NAFLD will be discussed.
Statins are a class of drugs widely prescribed as frontline therapy for lowering plasma LDL-cholesterol in cardiovascular risk prevention. Several clinical reports have recently suggested an increased risk of type 2 diabetes associated with chronic use of these drugs. The pathophysiology of this effect remains to be fully elucidated but impaired β-cell function constitutes a potential mechanism. The aim of this study was to explore the effect of a chronic treatment with lipophilic and hydrophilic statins on β-cell function, using human pancreatic islets and rat insulin-secreting INS-1 cells; we particularly focused on the role of mitochondria and oxidative stress. The present study demonstrates, for the first time, that atorvastatin (lipophilic) but not pravastatin (hydrophilic) affected insulin release and mitochondrial metabolism due to the suppression of antioxidant defense system and induction of ROS production in pancreatic β-cell models. Mevalonate addition and treatment with a specific antioxidant (N-AcetylCysteine) effectively reversed the observed defects. These data demonstrate that mitochondrial oxidative stress is a key element in the pathogenesis of statin-related diabetes and may have clinical relevance to design strategies for prevention or reduction of statin induced β-cell dysfunction and diabetes in patients treated with lipophilic statins.
Background & Aims In patients with non‐alcoholic fatty liver disease (NAFLD), liver biopsy is the gold standard to detect non‐alcoholic steatohepatitis (NASH) and stage liver fibrosis. We aimed to identify differentially expressed mRNAs and non‐coding RNAs in serum samples of biopsy‐diagnosed mild and severe NAFLD patients with respect to controls and to each other. Methods We first performed a whole transcriptome analysis through microarray (n = 12: four Control: CTRL; four mild NAFLD: NAS ≤ 4 F0; four severe NAFLD NAS ≥ 5 F3), followed by validation of selected transcripts through real‐time PCRs in an independent internal cohort of 88 subjects (63 NAFLD, 25 CTRL) and in an external cohort of 50 NAFLD patients. A similar analysis was also performed on liver biopsies and HepG2 cells exposed to oleate:palmitate or only palmitate (cellular model of NAFL/NASH) at intracellular/extracellular levels. Transcript correlation with histological/clinical data was also analysed. Results We identified several differentially expressed coding/non‐coding RNAs in each group of the study cohort. We validated the up‐regulation of UBE2V1, BNIP3L mRNAs, RP11‐128N14.5 lncRNA, TGFB2/TGFB2‐OT1 coding/lncRNA in patients with NAS ≥ 5 (vs NAS ≤ 4) and the up‐regulation of HBA2 mRNA, TGFB2/TGFB2‐OT1 coding/lncRNA in patients with Fibrosis stages = 3‐4 (vs F = 0‐2). In in vitro models: UBE2V1, RP11‐128N14.5 and TGFB2/TGFB2‐OT1 had an increasing expression trend ranging from CTRL to oleate:palmitate or only palmitate‐treated cells both at intracellular and extracellular level, while BNIP3L was up‐regulated only at extracellular level. UBE2V1, RP11‐128N14.5, TGFB2/TGFB2‐OT1 and HBA2 up‐regulation was also observed at histological level. UBE2V1, RP11‐128N14.5, BNIP3L and TGFB2/TGFB2‐OT1 correlated with histological/biochemical data. Combinations of TGFB2/TGFB2‐OT1 + Fibrosis Index based on the four factors (FIB‐4) showed an Area Under the Curve (AUC) of 0.891 (P = 3.00E‐06) or TGFB2/TGFB2‐OT1 + Fibroscan (AUC = 0.892, P = 2.00E‐06) improved the detection of F = 3‐4 with respect to F = 0‐2 fibrosis stages. Conclusions We identified specific serum coding/non‐coding RNA profiles in severe and mild NAFLD patients that possibly mirror the molecular mechanisms underlying NAFLD progression towards NASH/fibrosis. TGFB2/TGFB2‐OT1 detection improves FIB‐4/Fibroscan diagnostic performance for advanced fibrosis discrimination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.