The Internet of Things (IoT) enables software-based access to vast amounts of data streams from sensors measuring physical and virtual properties of smart devices and their surroundings. While sophisticated means for the control and data analysis of single IoT devices exist, a more process-oriented view of IoT systems is often missing. Such a lack of process awareness hinders the development of process-based systems on top of IoT environments and the application of process mining techniques for process analysis and optimization in IoT. We propose a framework for the stepwise correlation and composition of raw IoT sensor streams with events and activities on a process level based on Complex Event Processing (CEP). From this correlation we derive refined process event logs-possibly with ambiguities-that can be used for process analysis at runtime (i. e., online). We discuss the framework using examples from a smart factory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.