Abstract:The building integration of CPV modules offers several advantages over the integration of flat panel systems, but the decreasing price trend of standard modules observed in the last years has hampered the market expansion of CPV systems, which still don't rely on a low-cost mass production supply chain. To overcome this contingent issue and to foster the diffusion of innovative PV systems we developed a low concentration BIPV module with added functionalities, such as sunlight shading and building illumination. The electrical performances, retrieved under outdoor conditions, and the lighting performances of the Solar F-Light are shown. The latter indicate that it is suitable for ambient lighting, with a very limited power draw.
In this paper we describe two optical characterization methods applied to photovoltaic solar concentrators. Both methods are of the ‘inverse’ type, where the light source is applied in place of the receiver in order to reverse the path of light inside the concentrator. The first method is the ‘inverse illumination method’, already known in the literature, whereas the second one is a method obtained by modifying the ‘inverse luminescence method’, operating with electroluminescent light. Both methods use ideal Lambertian sources for producing the inverse light and can be applied to any type of solar concentrator (photovoltaic or thermodynamic). The optical simulations show their equivalence in obtaining the angular distribution of the transmission efficiency function of Rondine® PV concentrators, but the original inverse illumination method requires a simpler configuration and significantly lower simulation times.
The optical characterization of solar concentrators for photovoltaic applications is increasing its importance with the recent first commercialization of so me CPV technologies. In th is paper two effective characterization methodologies are presented, applied to a representative optics of concentration. Two "inverse" methods are compared: the firstly presented inverse illu mination method and another approach, derived by the inverse lu minescence method, operating with electrolu minescent light. Both use ideal lambertian sources for producing the inverse light path and can be applied to any type of solar concentrator (photovoltaic or thermodynamic). The optical simu lations show their equivalence to get the angular distribution of the transmission efficiency function, but the original inverse illu mination method demonstrates a simpler configuration and permits a significantly faster simulation process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.