The increasing presence of robots in society necessitates a deeper understanding into what attitudes people have toward robots. People may treat robots as mechanistic artifacts or may consider them to be intentional agents. This might result in explaining robots’ behavior as stemming from operations of the mind (intentional interpretation) or as a result of mechanistic design (mechanistic interpretation). Here, we examined whether individual attitudes toward robots can be differentiated on the basis of default neural activity pattern during resting state, measured with electroencephalogram (EEG). Participants observed scenarios in which a humanoid robot was depicted performing various actions embedded in daily contexts. Before they were introduced to the task, we measured their resting state EEG activity. We found that resting state EEG beta activity differentiated people who were later inclined toward interpreting robot behaviors as either mechanistic or intentional. This pattern is similar to the pattern of activity in the default mode network, which was previously demonstrated to have a social role. In addition, gamma activity observed when participants were making decisions about a robot’s behavior indicates a relationship between theory of mind and said attitudes. Thus, we provide evidence that individual biases toward treating robots as either intentional agents or mechanistic artifacts can be detected at the neural level, already in a resting state EEG signal.
We investigated whether the type of stimulus (pictures of static faces vs. body motion) contributes differently to the recognition of emotions. The performance (accuracy and response times) of 25 Low Autistic Traits (LAT group) young adults (21 males) and 20 young adults (16 males) with either High Autistic Traits or with High Functioning Autism Spectrum Disorder (HAT group) was compared in the recognition of four emotions (Happiness, Anger, Fear, and Sadness) either shown in static faces or conveyed by moving body patch-light displays (PLDs). Overall, HAT individuals were as accurate as LAT ones in perceiving emotions both with faces and with PLDs. Moreover, they correctly described non-emotional actions depicted by PLDs, indicating that they perceived the motion conveyed by the PLDs per se. For LAT participants, happiness proved to be the easiest emotion to be recognized: in line with previous studies we found a happy face advantage for faces, which for the first time was also found for bodies (happy body advantage). Furthermore, LAT participants recognized sadness better by static faces and fear by PLDs. This advantage for motion kinematics in the recognition of fear was not present in HAT participants, suggesting that (i) emotion recognition is not generally impaired in HAT individuals, (ii) the cues exploited for emotion recognition by LAT and HAT groups are not always the same. These findings are discussed against the background of emotional processing in typically and atypically developed individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.