Lipophilic marine biotoxins include okadaic acid, pectenotoxin, yessotoxin and azaspiracid groups. The consumption of contaminated molluscs can lead to acute food poisoning syndromes depending on the exposure level. Regulatory limits have been set by Regulation (European Community, 2004a) No 853/2004 and LC-MS/MS is used as the official analytical method according to Regulation (European Community, 2011) No 15/2011. In this study specimens of mussels (Mytilus galloprovincialis) were collected along the coasts of the central Adriatic Sea during the years 2015–2017 and analyzed by the European harmonized Standard Operating Procedure. The method was validated for linearity, specificity, repeatability and reproducibility and it revealed able to be used for the detection of the lipophilic marine biotoxins. Levels of okadaic acid, pectenotoxin, yessotoxin and its analogs were detected at different concentrations in 148 (37%) out of a total of 400 samples, always below the maximum limits, except for 11 (4.3%) of them that were non-compliant because they exceeded the regulatory limit. Moreover, some samples were exposed to a multi-toxin mixture with regards to okadaic acid, yessotoxin and 1-Homo yessotoxin. Following these results, the aquaculture farms from which the non-compliant samples derived were closed until the analytical data of two consecutive samplings returned favorable. Besides the potential risk of consumption of mussels contaminated by lipophilic marine biotoxins, these marine organisms can be considered as bio-indicators of the contamination status of the marine ecosystem.
This preliminary study describes the use of high resolution and accuracy mass spectrometry techniques combined with new generation chemical software products for detecting and identifying contaminants in food commodities. As a first step, the extracts of routine target analysis samples (obtained in our official laboratory responsible for food residues control) were acquired and processed with this method in order to search unknown and non-targeted contaminants in food. In order to verify the feasibility of the presented method, the research has been firstly addressed to untargeted pesticides and their metabolites in stone fruits commodities and tomatoes. The differential analysis carried with Compound Discoverer 2.0 between the investigated unknown sample and the blank matrix sample allowed to remove all the matrix molecular components; Aggregated Computational Toxicology Resource (ACToR) helped to understand and predict chemical interpretation of substances. The acquisition in FullScan-AIF and FullScan-ddMS2 allowed the clear detection and identification of isobaric compounds such as quinalphos and phoxim. In order to verify that the proposed method is suitable to the scope of application, the main points of SANTE/11813/2017 Document have been followed. The results demonstrate that no false positives and no false negatives have been detected from the analysis of samples spiked with 55 pesticides at 0.010 and 0.10 mg kg−1. This preliminary study has been also tested with a Proficiency Test (EUPT-FV-SM08) and, according to EUPT-FV-SM08 Final Report, our laboratory has been included in the 67% (56) that clearly detected over 70% pesticides. Finally, this method has been extended to other matrices and contaminants.
Background: This paper describes the activities and the results obtained from a monitoring of contamination levels of some metals: lead (Pb), cadmium (Cd), mercury (Hg), total arsenic (As tot), vanadium (V), chromium (Cr), antimony (Sb), manganese (Mn) and aluminium (Al) in vegetable food cultivated or sold in local market, near Resit landfill in Giugliano (Campania region, Italy). This area, once well known like Campania felix for abundance and quality of food farming, supplies local, national and community markets. Unfortunately, in the last twenty years, this region has been involved in lots of illegal dumpings of hazardous and urban wastes, that have been periodically set to fire with possible health impact. For this reason it has been renamed as "Terra dei Fuochi" ("Land of Fires"). The aim of this study was the evaluation of the consumers exposure level to metals coming from the intake of likely contaminated vegetables and fruits. Results: Vegetable and fruit samples was collected in November 2013 on fields and in February 2014 in local markets. One hundred and thirty-nine samples (peppers, eggplants, lettuces, strawberries and turnip greens) were analysed for metals: fifty-six samples from fields near Resit dump and eighty-three from local markets situated in neighboring provinces and in the southern Lazio. Metal concentrations in the investigated samples were determined by inductively coupled plasmamass spectrometry (ICP-MS) or inductively coupled plasmaatomic emission spectrometry (ICP-AES) techniques applying validated and accredited analytical methods. Conclusions: In all analysed matrices, the level of each investigated metal, highlighted a very low health risk for consumers. The metal contamination levels measured in this study do not show significant differences compared to relative background values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.