Industrial application of ion‐exchange membranes, the key component of many electro‐membrane processes, is often hindered due to their high cost—result of complex fabrication methods and use of highly engineered precursors. As an alternative to conventional anion‐exchange membrane (AMX), this study focuses on the fabrication of cation‐coated filtration membranes (CCFM‐Type 1 and CCFM‐Type 2) by depositing a thin layer of crosslinked branched polyethyleneimine (PEI)‐based ionomer on top of the porous substrate. The use of commodity precursors (PEI) in combination with energy efficient fabrication processes ensures a low end‐cost for CCFMs. The properties and the performances of these membranes are evaluated and compared with AMX. Though ionic conductance of both CCFMs is found to be lower than AMX, similar electrochemical behavior is observed for all three membranes. In terms of performance, the highest NaCl demineralization rate is given by CCFM‐Type 2, while whey demineralization rate for all three membranes is similar. Energy consumption during both processes is increased for CCFMs probably due to noticeably higher global resistance which the ED system reaches during the process. These promising results suggest the possible application of these cost‐effective CCFMs in electrodialysis demineralization processes as an alternative to commercial AMX at an industrial level.
This paper presents a novel, cost-effective approach to the fabrication of composite anion exchange membranes (AEMs). Hierarchical AEMs have been fabricated by coating a porous substrate with an interpenetrating polymer network (IPN) layer where poly(vinylpyrrolidone) (PVP) is immobilized in a crosslinked matrix. The IPN matrix was formed by UV initiated radical crosslinking of a mixture of acrylamide-based monomers and acrylic resins. The fabricated membranes have been compared with a commercial material (Fumatech FAP 450) in terms of ionic transport properties and performance in a vanadium redox flow battery (VRFB). Measures of area-specific resistance (ASR) and vanadium permeability for the proposed membranes demonstrated properties approaching the commercial benchmark. These properties could be tuned by changing the content of PVP in the IPN coating. Higher PVP/matrix ratios facilitate a higher water uptake of the coating layer and thus lower ASR (as low as 0.58 Ω.cm2). On the contrary, lower PVP/matrix ratios allow to reduce the water uptake of the coating and hence decrease the vanadium permeability at the cost of a higher ASR (as high as 1.99 Ω.cm2). In VRFB testing the hierarchical membranes enabled to reach energy efficiency comparable with the commercial AEM (PVP_14—74.7%, FAP 450—72.7% at 80 mA.cm−2).
Hierarchical cation-exchange membranes (hCEMs) fabricated by blade coating and UV crosslinking of ionomer on top of a porous substrate demonstrated promising results in performing NaCl demineralization. In the food industry, complex solutions are used and hCEMs were never investigated before for these food applications. The performances of two different coating chemistries (urethane acrylate based: UL, and acrylic acid based: EbS) and three crosslinking degrees (UL5, UL6, UL7 for UL formulations, and EbS-1, EbS-2, EbS-3 for EbS formulations) were formulated. The impacts of hCEMs properties and crosslinking density on whey demineralization performances by electrodialysis (ED) were evaluated and compared to CMX, a high performing CEM for whey demineralization by ED. The crosslinking density had an impact on the hCEMs area specific resistance, and on the ionic conductance for EbS membrane. However, 70% demineralization of 18% whey solution was reached for the first time for hCEMs without any fouling observed, and with comparable performances to the CMX benchmark. Although some properties were impacted by the crosslinking density, the global performances in ED (limiting current, demineralization duration, global system resistance, energy consumption, current efficiency) for EbS and UL6 membranes were similar to the CMX benchmark. These promising results suggest the possible application of these hCEMs (UL6, EbS-2, and EbS-3) for whey demineralization by ED and more generally complex products as an alternative in the food industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.