Edible insects represent an interesting alternative source of protein for human consumption but the main hurdle facing the edible insect sector is low consumer acceptance. However, increased acceptance is anticipated when insects are incorporated as a processed ingredient, such as protein-rich powder, rather than presented whole. To produce edible insect fractions with high protein content, a defatting step is necessary. This study investigated the effects of six defatting methods (conventional solvents, three-phase partitioning, and supercritical CO2) on lipid extraction yield, fatty profiles, and protein extraction and purification of house cricket (Acheta domesticus) and mealworm (Tenebrio molitor) meals. Ethanol increased the lipid extraction yield (22.7%–28.8%), irrespective of the insect meal used or the extraction method applied. Supercritical CO2 gave similar lipid extraction yields as conventional methods for Tenebrio molitor (T. molitor) (22.1%) but was less efficient for Acheta domesticus (A. domesticus) (11.9%). The protein extraction yield ranged from 12.4% to 38.9% for A.
domesticus, and from 11.9% to 39.3% for T. molitor, whereas purification rates ranged from 58.3% to 78.5% for A. domesticus and from 48.7% to 75.4% for T. molitor.
An instrumental approach to better understand the release and persistence of flavor in oil-in-water emulsions has been developed. Emulsions were prepared with various whey protein (0.1% to 3.16%), sunflower oil (1% to 8%), and ethyl hexanoate (0% to 0.04%) concentrations. Flavor release profile in real time was measured at 37 degrees C using a specially designed glass cell connected directly to a gas chromatograph equipped with a flame ionization detector. The intensity of flavor released from the emulsion stirred at a shear rate of 100 s(-1) was monitored as a function of time and data were fitted to a 1st-order kinetic equation. Maximum intensity and decay rate constant were both determined from the model and the persistence index (inversely associated to decay rate constant) was calculated. For constant aroma concentration in the emulsion, maximum intensity significantly decreased as whey protein and oil concentrations increased. For increasing aroma concentration, maximum intensity was directly proportional to the ethyl hexanoate concentration when the oil content was kept constant but leveled off when oil content was increased. Persistence of flavor significantly increased with increasing protein and oil concentrations while aroma concentrations had no effect when oil content was constant. The results showed that oil concentration had a greater influence on flavor release characteristics than protein concentration. Aroma concentration in the oil phase, rather than in the emulsion, determines the kinetics of hydrophobic flavor release. The method provides a useful tool for the rapid and reproducible measurement of flavor release profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.