Biological pores regulate the cellular traffic of a large variety of solutes, often with high selectivity and fast flow rates. These pores share several common structural features: the inner surface of the pore is frequently lined with hydrophobic residues, and the selectivity filter regions often contain charged functional groups. Hydrophobic, narrow-diameter carbon nanotubes can provide a simplified model of membrane channels by reproducing these critical features in a simpler and more robust platform. Previous studies demonstrated that carbon nanotube pores can support a water flux comparable to natural aquaporin channels. Here, we investigate ion transport through these pores using a sub-2-nm, aligned carbon nanotube membrane nanofluidic platform. To mimic the charged groups at the selectivity region, we introduce negatively charged groups at the opening of the carbon nanotubes by plasma treatment. Pressure-driven filtration experiments, coupled with capillary electrophoresis analysis of the permeate and feed, are used to quantify ion exclusion in these membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes exhibit significant ion exclusion that can be as high as 98% under certain conditions. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, whereas steric and hydrodynamic effects appear to be less important.biomimetic platform ͉ ion channel ͉ ion transport ͉ nanofiltration I on transport across cellular membranes is essential to many of life's processes, such as electrical signaling in nerves, muscles, and synapses or cell's maintenance of homeostatic balance. Biological systems achieve rapid, selective, and ultraefficient transmembrane mass transport by employing a large variety of specialized protein channels of nanometer or subnanometer size (1). High-resolution x-ray structures, protein sequencing, targeted mutations, and biophysical characterizations have provided new insight on the link between nanochannel protein architecture, transport rates, selectivity, and gating properties. Interestingly, these studies have shown that membrane nanochannels share several common features. For example, aquaporins (2, 3), proton channels (4, 5), and ion channels (6-11) all have relatively narrow and hydrophobic pore regions. By contrast, the selectivity filter regions of membrane ion channels are enriched with charged residues.Despite the enormous progress made in recent decades, the complex macromolecular nature of these biological machines still complicates our understanding of the underlying mechanisms responsible for fast mass transport, selectivity, gating, and the functional role of hydrophobic pore lining and charged functionalities. Thus, it is important to create simplified, biomimetic nanochannels that could help to clarify the physics of ion permeation at the nanoscale, as well as create the next generation of membranes that employ efficient molecul...
Advances in the synthesis and scalable manufacturing of single-walled carbon nanotubes (SWCNTs) remain critical to realizing many important commercial applications. Here we review recent breakthroughs in the synthesis of SWCNTs and highlight key ongoing research areas and challenges. A few key applications that capitalize on the properties of SWCNTs are also reviewed with respect to the recent synthesis breakthroughs and ways in which synthesis science can enable advances in these applications. While the primary focus of this review is on the science framework of SWCNT growth, we draw connections to mechanisms underlying the synthesis of other 1D and 2D materials such as boron nitride nanotubes and graphene.
Nanofluidics in carbon nanotubes Extremely high aspect ratios, molecularly smooth hydrophobic graphitic walls, and nanoscale inner diameters of carbon nanotubes give rise to the unique phenomenon of ultra-efficient transport of water and gas through these ultra-narrow molecular pipes. Water and gas molecules move through nanotube pores orders of magnitude faster than through other pores of comparable size. The proposed water transport mechanism has a distinct similarity to the transport mechanisms of biological ion channels. Molecular dynamics simulations and experimental measurements of water transport underscore the importance of nanotube structure in enabling ultra-efficient transport through the pore.
Small-diameter carbon nanotubes (CNTs) are shown to enable exceptionally fast transport of water vapor under a concentration gradient driving force. Thanks to this property, membranes having sub-5 nm CNTs as conductive pores feature outstanding breathability while maintaining a high degree of protection from biothreats by size exclusion.
A nanopore decorated with crown ether and DNA is selective to potassium ions over sodium ions at concentrations up to 1 M.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.