Platelet concentrates for surgical use are tools of regenerative medicine designed for the local release of platelet growth factors into a surgical or wounded site, in order to stimulate tissue healing or regeneration. Leukocyte content and fibrin architecture are 2 key characteristics of all platelet concentrates and allow to classify these technologies in 4 families, but very little is known about the impact of these 2 parameters on the intrinsic biology of these products. In this demonstration, we highlight some outstanding differences in the growth factor and matrix protein release between 2 families of platelet concentrate: Pure Platelet-Rich Plasma (P-PRP, here the Anitua's PRGF - Preparation Rich in Growth Factors - technique) and Leukocyte- and Platelet-Rich Fibrin (L-PRF, here the Choukroun's method). These 2 families are the extreme opposites in terms of fibrin architecture and leukocyte content. The slow release of 3 key growth factors (Transforming Growth Factor β1 (TGFβ1), Platelet-Derived Growth Factor AB (PDGF-AB) and Vascular Endothelial Growth Factor (VEGF)) and matrix proteins (fibronectin, vitronectin and thrombospondin-1) from the L-PRF and P-PRP gel membranes in culture medium is described and discussed. During 7 days, the L-PRF membranes slowly release significantly larger amounts of all these molecules than the P-PRP gel membranes, and the 2 products display different release patterns. In both platelet concentrates, vitronectin is the sole molecule to be released almost completely after only 4 hours, suggesting that this molecule is not trapped in the fibrin matrix and not produced by the leukocytes. Moreover the P-PRP gel membranes completely dissolve in the culture medium after less than 5 days only, while the L-PRF membranes are still intact after 7 days. This simple demonstration shows that the polymerization and final architecture of the fibrin matrix considerably influence the strength and the growth factor trapping/release potential of the membrane. It also suggests that the leukocyte populations have a strong influence on the release of some growth factors, particularly TGFβ1. Finally, the various platelet concentrates present very different biological characteristics, and an accurate definition and characterization of the different families of product is a key issue for a better understanding and comparison of the reported clinical effects of these surgical adjuvants.
Platelet concentrates for surgical use are innovative tools of regenerative medicine, and were widely tested in oral and maxillofacial surgery. Unfortunately, the literature on the topic is contradictory and the published data are difficult to sort and interpret. In periodontology and dentoalveolar surgery, the literature is particularly dense about the use of the various forms of Platelet-Rich Plasma (PRP) - Pure Platelet-Rich Plasma (P-PRP) or Leukocyte- and Platelet-Rich Plasma (L-PRP) - but still limited about Platelet-Rich Fibrin (PRF) subfamilies. In this first article, we describe and discuss the current published knowledge about the use of PRP and PRF during tooth avulsion or extraction, mucogingival surgery, Guided Tissue Regeneration (GTR) or bone filling of periodontal intrabony defects, and regeneration of alveolar ridges using Guided Bone Regeneration (GBR), in a comprehensive way and in order to avoid the traps of a confusing literature and to highlight the underlying universal mechanisms of these products. Finally, we particularly insist on the perspectives in this field, through the description and illustration of the systematic use of L-PRF (Leukocyte- and Platelet- Rich Fibrin) clots and membranes during tooth avulsion, cyst exeresis or the treatment of gingival recessions by root coverage. The use of L-PRF also allowed to define new therapeutic principles: NTR (Natural Tissue Regeneration) for the treatment of periodontal intrabony lesions and Natural Bone Regeneration (NBR) for the reconstruction of the alveolar ridges. In periodontology, this field of research will soon find his golden age by the development of user-friendly platelet concentrate procedures, and the definition of new efficient concepts and clinical protocols.
Platelet concentrates for surgical use are innovative tools of regenerative medicine, and were widely tested in oral and maxillofacial surgery. Unfortunately, the literature on the topic is contradictory and the published data are difficult to sort and interpret. In bone graft, implant and reconstructive surgery, the literature is particularly dense about the use of the various forms of Platelet-Rich Plasma (PRP) - Pure Platelet-Rich Plasma (P-PRP) or Leukocyte- and Platelet-Rich Plasma (L-PRP) - but still limited about Platelet-Rich Fibrin (PRF) subfamilies. In this second article, we describe and discuss the current published knowledge about the use of PRP and PRF during implant placement (particularly as surface treatment for the stimulation of osseointegration), the treatment of peri-implant bone defects (after peri-implantitis, during implantation in an insufficient bone volume or during immediate post-extraction or post-avulsion implantation), the sinuslift procedures and various complex implant-supported treatments. Other potential applications of the platelet concentrates are also highlighted in maxillofacial reconstructive surgery, for the treatment of patients using bisphosphonates, anticoagulants or with post-tumoral irradiated maxilla. Finally, we particularly insist on the perspectives in this field, through the description and illustration of the use of L-PRF (Leukocyte- and Platelet-Rich Fibrin) clots and membranes during the regeneration of peri-implant bone defects, during the sinus-lift procedure and during complex implant-supported rehabilitations. The use of L-PRF allowed to define a new therapeutic concept called the Natural Bone Regeneration (NBR) for the reconstruction of the alveolar ridges at the gingival and bone levels. As it is illustrated in this article, the NBR principles allow to push away some technical limits of global implant-supported rehabilitations, particularly when combined with other powerful biotechnological tools: metronidazole solution, adequate bone substitutes and improved implant designs and surfaces (for example here AstraTech Osseospeed or Intra-Lock Ossean implants). As a general conclusion, we are currently living a transition period in the use of PRP and PRF in oral and maxillofacial surgery. PRPs failed to prove strong strategic advantages that could justify their use in daily practice, and the use of most PRP techniques will probably be limited to some very specific applications where satisfactory results have been reached. Only a few simple, inexpensive and efficient techniques such as the L-PRF will continue to develop in oral and maxillofacial surgery in the next years. This natural evolution illustrates that clinical sciences need concrete and practical solutions, and not hypothetical benefits. The history of platelet concentrates in oral and maxillofacial surgery finally demonstrates also how the techniques evolve and sometimes promote the definition of new therapeutical concepts and clinical protocols in the today's era of regenerative medicine.
Individual respiratory protective devices and face masks represent critical tools in protecting health care workers in hospitals and clinics, and play a central role in decreasing the spread of the high-risk pandemic infection of 2019, coronavirus disease (COVID-19). The aim of the present study was to compare the facial skin temperature and the heat flow when wearing medical surgical masks to the same factors when wearing N95 respirators. A total of 20 subjects were recruited and during the evaluation, each subject was invited to wear a surgical mask or respirator for 1 h. The next day in the morning at the same hour, the same subject wore a N95 mask for 1 h with the same protocol. Infrared thermal evaluation was performed to measure the facial temperature of the perioral region and the perception ratings related to the humidity, heat, breathing difficulty, and discomfort were recorded. A significant difference in heat flow and perioral region temperature was recorded between the surgical mask and the N95 respirator (p < 0.05). A statistically significant difference in humidity, heat, breathing difficulty, and discomfort was present between the groups. The study results suggest that N95 respirators are able to induce an increased facial skin temperature, greater discomfort and lower wearing adherence when compared to the medical surgical masks.
In the field of platelet concentrates for surgical use, most products are termed Platelet-Rich Plasma (PRP). Unfortunately, this term is very general and incomplete, leading to many confusions in the scientific database. In this article, a panel of experts discusses this issue and proposes an accurate and simple terminology system for platelet concentrates for surgical use. Four main categories of products can be easily defined, depending on their leukocyte content and fibrin architecture: Pure Platelet-Rich Plasma (P-PRP), such as cell separator PRP, Vivostat PRF or Anitua's PRGF; Leukocyteand Platelet-Rich Plasma (L-PRP), such as Curasan, Regen, Plateltex, SmartPReP, PCCS, Magellan, Angel or GPS PRP; Pure Plaletet-Rich Fibrin (P-PRF), such as Fibrinet; and Leukocyte- and Platelet-Rich Fibrin (L-PRF), such as Choukroun's PRF. P-PRP and L-PRP refer to the unactivated liquid form of these products, their activated versions being respectively named P-PRP gels and L-PRP gels. The purpose of this search for a terminology consensus is to plead for a more serious characterization of these products. Researchers have to be aware of the complex nature of these living biomaterials, in order to avoid misunderstandings and erroneous conclusions. Understanding the biomaterials or believing in the magic of growth factors ? From this choice depends the future of the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.