Abstract-We introduce a new technique for coordinating teams of unmanned aerial vehicles (UAVs) when deployed to collect live aerial imagery of the scene of a disaster. We define this problem as one of task assignment where the UAVs dynamically coordinate over tasks representing the imagery collection requests. To measure the quality of the assignment of one or more UAVs to a task, we propose a novel utility function which encompasses several constraints, such as the task's importance and the UAVs' battery capacity so as to maximise performance. We then solve the resulting optimisation problem using a fully asynchronous and decentralised implementation of the max-sum algorithm, a well known message passing algorithm previously used only in simulated domains. Finally, we evaluate our approach both in simulation and on real hardware. First, we empirically evaluate our utility and show that it yields a better trade off between the quantity and quality of completed tasks than similar utilities that do not take all the constraints into account. Second, we deploy it on two hexacopters and assess its practical viability in the real world.
Attacker-Defender Stackelberg security games (SSGs) have emerged as an important research area in multi-agent systems. However, existing SSGs models yield fixed, static, schedules which fail in dynamic domains where defenders face execution uncertainty, i.e., in domains where defenders may face unanticipated disruptions of their schedules. A concrete example is an application involving checking fares on trains, where a defender's schedule is frequently interrupted by fare evaders, making static schedules useless.
To address this shortcoming, this paper provides four main contributions. First, we present a novel general Bayesian Stackelberg game model for security resource allocation in dynamic uncertain domains. In this new model, execution uncertainty is handled by using a Markov decision process (MDP) for generating defender policies. Second, we study the problem of computing a Stackelberg equilibrium for this game and exploit problem structure to reduce it to a polynomial-sized optimization problem. Shifting to evaluation, our third contribution shows, in simulation, that our MDP-based policies overcome the failures of previous SSG algorithms. In so doing, we can now build a complete system, that enables handling of schedule interruptions and, consequently, to conduct some of the first controlled experiments on SSGs in the field. Hence, as our final contribution, we present results from a real-world experiment on Metro trains in Los Angeles validating our MDP-based model, and most importantly, concretely measuring the benefits of SSGs for security resource allocation.
Buoyed by the success of deep multilayer neural networks, there is renewed interest in scalable learning of Bayesian neural networks. Here, we study algorithms that utilize recent advances in Bayesian inference to efficiently learn distributions over network weights. In particular, we focus on recently proposed assumed density filtering based methods for learning Bayesian neural networks -- Expectation and Probabilistic backpropagation. Apart from scaling to large datasets, these techniques seamlessly deal with non-differentiable activation functions and provide parameter (learning rate, momentum) free learning. In this paper, we first rigorously compare the two algorithms and in the process develop several extensions, including a version of EBP for continuous regression problems and a PBP variant for binary classification. Next, we extend both algorithms to deal with multiclass classification and count regression problems. On a variety of diverse real world benchmarks, we find our extensions to be effective, achieving results competitive with the state-of-the-art.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.