This study investigated similarities and differences in the experience of auditory hallucinations, paranoia, and childhood trauma in schizophrenia and borderline personality disorder (BPD). Patients with clinical diagnoses of schizophrenia or BPD were interviewed using the Structured Clinical Interviews for DSM-IV. Axes 1 and 2 and auditory hallucinations, paranoia, and childhood trauma were assessed. A total of 111 patients participated; 59 met criteria for schizophrenia, 33 for BPD, and 19 for both. The groups were similar in their experiences of voices, including the perceived location of them, but they differed in frequency of paranoid delusions. Those with a diagnosis of BPD, including those with schizophrenia comorbidity, reported more childhood trauma, especially emotional abuse. BPD and schizophrenia frequently coexist, and this comorbidity has implications for diagnostic classification and treatment. Levels of reported childhood trauma are especially high in those with a BPD diagnosis, whether they have schizophrenia or not, and this requires assessment and appropriate management.
The ability to accurately infer functional connectivity between ensemble neurons using experimentally acquired spike train data is currently an important research objective in computational neuroscience. Point process generalized linear models and maximum likelihood estimation have been proposed as effective methods for the identification of spiking dependency between neurons. However, unfavorable experimental conditions occasionally results in insufficient data collection due to factors such as low neuronal firing rates or brief recording periods, and in these cases, the standard maximum likelihood estimate becomes unreliable. The present studies compares the performance of different statistical inference procedures when applied to the estimation of functional connectivity in neuronal assemblies with sparse spiking data. Four inference methods were compared: maximum likelihood estimation, penalized maximum likelihood estimation, using either ℓ 2 or ℓ 1 regularization, and hierarchical Bayesian estimation based on a variational Bayes algorithm. Algorithmic performances were compared using well-established goodness-of-fit measures in benchmark simulation studies, and the hierarchical Bayesian approach performed favorably when compared with the other algorithms, and this approach was then successfully applied to real spiking data recorded from the cat motor Correspondence to: Zhe Chen, zhechen@neurostat.mit.edu. cortex. The identification of spiking dependencies in physiologically acquired data was encouraging, since their sparse nature would have previously precluded them from successful analysis using traditional methods. NIH Public Access
Background Parkinson's disease is heterogeneous in symptom presentation and progression. Increased understanding of both aspects can enable better patient management and improve clinical trial design. Previous approaches to modelling Parkinson's disease progression assumed static progression trajectories within subgroups and have not adequately accounted for complex medication effects. Our objective was to develop a statistical progression model of Parkinson's disease that accounts for intra-individual and inter-individual variability and medication effects. Methods In this longitudinal data study, data were collected for up to 7-years on 423 patients with early Parkinson's disease and 196 healthy controls from the Parkinson's Progression Markers Initiative (PPMI) longitudinal observational study. A contrastive latent variable model was applied followed by a novel personalised input-output hidden Markov model to define disease states. Clinical significance of the states was assessed using statistical tests on seven key motor or cognitive outcomes (mild cognitive impairment, dementia, dyskinesia, presence of motor fluctuations, functional impairment from motor fluctuations, Hoehn and Yahr score, and death) not used in the learning phase. The results were validated in an independent sample of 610 patients with Parkinson's disease from the National Institute of Neurological Disorders and Stroke Parkinson's Disease Biomarker Program (PDBP).
Objective Chronic diseases often have long durations with slow, nonlinear progression and complex, and multifaceted manifestation. Modeling the progression of chronic diseases based on observational studies is challenging. We developed a framework to address these challenges by building probabilistic disease progression models to enable better understanding of chronic diseases and provide insights that could lead to better disease management. Materials and Methods We developed a framework to build probabilistic disease progression models using observational medical data. The framework consists of two steps. The first step determines the number of disease states. The second step builds a probabilistic disease progression model with the determined number of states. The model discovers typical states along the trajectory of the target disease, learns the characteristics of these states, and transition probabilities between the states. We applied the framework to an integrated observational HD dataset curated from four recent observational HD studies. Results The resulting HD progression model identified nine disease states. Compared to state-of-art HD staging system, the model 1) covers wider range of HD progression; 2) is able to quantitatively describe complex changes around the time of clinical diagnosis; 3) discovers multiple potential HD progression pathways; and 4) reveals expected time durations of the identified states. Discussion and Conclusion The proposed framework addresses practical challenges in observational data and can help enhance the understanding of progression of chronic diseases. The framework could be applied to other chronic diseases with the help of clinical knowledge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.