Magnetic resonance imaging (MRI) provides non-invasive, repetitive measures in the same individual, allowing the study of a physio-pathological event over time. In this study, we tested the performance of 7 Tesla multi-parametric MRI to monitor the dynamic changes of mouse skeletal muscle injury and regeneration upon acute ischemia induced by femoral artery dissection. T2-mapping (T2 relaxation time), diffusion-tensor imaging (Fractional Anisotropy) and perfusion by Dynamic Contrast-Enhanced MRI (K-trans) were measured and imaging results were correlated with histological morphometric analysis in both Gastrocnemius and Tibialis anterior muscles. We found that tissue damage positively correlated with T2-relaxation time, while myofiber regeneration and capillary density positively correlated with Fractional Anisotropy. Interestingly, K-trans positively correlated with capillary density. Accordingly, repeated MRI measurements between day 1 and day 28 after surgery in ischemic muscles showed that: 1) T2-relaxation time rapidly increased upon ischemia and then gradually declined, returning almost to basal level in the last phases of the regeneration process; 2) Fractional Anisotropy dropped upon ischemic damage induction and then recovered along with muscle regeneration and neoangiogenesis; 3) K-trans reached a minimum upon ischemia, then progressively recovered. Overall, Gastrocnemius and Tibialis anterior muscles displayed similar patterns of MRI parameters dynamic, with more marked responses and less variability in Tibialis anterior. We conclude that MRI provides quantitative information about both tissue damage after ischemia and the subsequent vascular and muscle regeneration, accounting for the differences between subjects and, within the same individual, between different muscles.
Central venous catheters (CVCs) are increasingly used across specialties for invasive haemodynamic monitoring and for the delivery of fluids, medications, and nutritional support. Cerebral air embolism (CAE) is a rare but potentially fatal complication associated with the insertion, maintenance, and removal of CVCs. It can occur through different mechanisms, including the direct retrograde ascension of air into the cerebral veins and paradoxical embolism due to a right-to-left intracardiac or intrapulmonary shunt. The “hand-knob” area is the cortical region within the primary motor cortex that contains the representation of the hand. It is located in the superior precentral gyrus and is the site of less than 1% of all ischaemic strokes. We report here the case of a patient who experienced an ischaemic stroke of the right “hand-knob” area, due to paradoxical CAE through a previously undiagnosed patent foramen ovale (PFO), after the insertion of a catheter in the right internal jugular vein. We also provide an overview of the pathophysiology, diagnosis, and treatment of CAE. Suspecting CAE in the case of an acute neurological event occurring in close temporal relationship with central venous catheterization is paramount to allow the early recognition and treatment of this uncommon form of iatrogenic stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.