Precooling studies confirm that increasing body heat is a limiting factor during exercise. However, it seems that precooling is only beneficial for endurance exercise of up to 30–40 minutes rather than intermittent or short duration exercise.
The purpose of this study was to examine the running performances and associated thermoregulatory responses of African and Caucasian runners in cool and warm conditions. On two separate occasions, 12 (n = 6 African, n = 6 Caucasian) well-trained men ran on a motorized treadmill at 70% of peak treadmill running velocity for 30 min followed by an 8-km self-paced performance run (PR) in cool (15 degrees C) or warm (35 degrees C) humid (60% relative humidity) conditions. Time to complete the PR in the cool condition was not different between groups ( approximately 27 min) but was significantly longer in warm conditions for Caucasian (33.0 +/- 1.6 min) vs. African (29.7 +/- 2.3 min, P < 0.01) runners. Rectal temperatures were not different between groups but were higher during warm compared with cool conditions. During the 8-km PR, sweat rates for Africans (25.3 +/- 2.3 ml/min) were lower compared with Caucasians (32.2 +/- 4.1 ml/min; P < 0.01). Relative rates of heat production were less for Africans than Caucasians in the heat. The finding that African runners ran faster only in the heat despite similar thermoregulatory responses as Caucasian runners suggests that the larger Caucasians reduce their running speed to ensure an optimal rate of heat storage without developing dangerous hyperthermia. According to this model, the superior running performance in the heat of these African runners can be partly attributed to their smaller size and hence their capacity to run faster in the heat while storing heat at the same rate as heavier Caucasian runners.
Findings indicate positive clinical outcomes in metabolic, anthropometric and aerobic fitness variables. This study provides evidence for sport and group-based activities leading to improved clinical risk factors associated with T2DM development in clinically obese Indigenous Australian men.
Results confirm the large tolerance for change in Cox during exercise at sea level, yet further indicate that, in conditions of self-selected work rate, cerebral deoxygenation remains within a range that does not hinder strenuous exercise performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.