To generate a vaccine to protect against a variety of human pathogenic fungi, we conjugated laminarin (Lam), a well-characterized but poorly immunogenic β-glucan preparation from the brown alga Laminaria digitata, with the diphtheria toxoid CRM197, a carrier protein used in some glyco-conjugate bacterial vaccines. This Lam-CRM conjugate proved to be immunogenic and protective as immunoprophylactic vaccine against both systemic and mucosal (vaginal) infections by Candida albicans. Protection probably was mediated by anti-β-glucan antibodies as demonstrated by passive transfer of protection to naive mice by the whole immune serum, the immune vaginal fluid, and the affinity-purified anti-β-glucan IgG fractions, as well as by administration of a β-glucan–directed IgG2b mAb. Passive protection was prevented by adsorption of antibodies on Candida cells or β-glucan particles before transfer. Anti-β-glucan antibodies bound to C. albicans hyphae and inhibited their growth in vitro in the absence of immune-effector cells. Remarkably, Lam-CRM–vaccinated mice also were protected from a lethal challenge with conidia of Aspergillus fumigatus, and their serum also bound to and markedly inhibited the growth of A. fumigatus hyphae. Thus, this novel conjugate vaccine can efficiently immunize and protect against two major fungal pathogens by mechanisms that may include direct antifungal properties of anti-β-glucan antibodies.
SUMMARYIt is estimated that Helicobacter pylori infects the stomachs of over 50% of the world's population and if not treated may cause chronic gastritis, peptic ulcer disease, gastric adenocarcinoma and gastric B-cell lymphoma. The aim of this study was to enhance the mucosal and systemic immune responses against the H. pylori antigens cytotoxin-associated gene A (CagA) and neutrophil-activating protein (NAP), through combinations of mucosal and systemic immunizations in female BALB/c mice. We found that oral or intranasal (i.n.) followed by i.m. immunizations induced signi®cantly higher serum titres against NAP and CagA compared to i.n. alone, oral alone, i.m. alone, i.m. followed by i.n. or i.m. followed by oral immunizations. However, only oral followed by i.m. immunizations induced anti-NAP antibody-secreting cells in the stomach. Moreover, mucosal immunizations alone or in combination with i.m., but not i.m. immunizations alone, induced mucosal immunoglobulin A (IgA) responses in faeces. Any single route or combination of immunization routes with NAP and CagA preferentially induced antigen-speci®c splenic interleukin-4-secreting cells and far fewer interferon-g-secreting cells in the spleen. Moreover, i.n. immunizations alone or in combination with i.m. immunizations induced predominantly serum IgG1 and far less serum IgG2a. Importantly, we found that while both i.n. and i.m. recall immunizations induced similar levels of serum antibody responses, mucosal IgA responses in faeces were only achieved through i.n. recall immunization. Collectively, our data show that mucosal followed by systemic immunization signi®cantly enhanced local and systemic immune responses and that i.n. recall immunization is required to induce both mucosal and systemic memory type responses.
Quality by design (ICH-Topic Q8) requires a prospective summary of the desired quality characteristics of a drug product. This is known as the Quality Target Product Profile (QTPP), which forms the basis for the design and development of the product. An analogous term has been established for analytical procedures called the Analytical Target Profile (ATP). The ATP, in a similar fashion to the QTPP, prospectively summarizes the requirements associated with a measurement on a quality attribute which needs to be met by an analytical procedure. Criteria defined in the ATP relate to the maximum uncertainty associated with the reportable result that is required to maintain acceptable confidence in the quality decision made from the result. The ATP is used to define and assess the fitness of an analytical procedure in the development phase and during all changes across the analytical lifecycle. One or more analytical procedures can meet the requirements of an ATP. The ATP can be applied to any quality attribute across any pharmaceutical modality where an analytical procedure is used to generate a reportable result, and this paper provides examples from three of these modalities: small molecules, oligonucleotides, and vaccines. Some key performance characteristics will be discussed for each ATP, namely specificity, accuracy, and precision, taking into account the expected range of the analyte. The combination of accuracy and precision into a combined uncertainty characteristic is also discussed as a more holistic approach. The use of the ATP concept will help focus attention on the properties of a method which impact quality decisions rather than method descriptions and may enable greater regulatory flexibility across the lifecycle using established conditions based on method performance criteria as proposed in the Step 2 version of ICHQ12. The revision of ICHQ2(R1) and development of the new ICHQ14 guideline (Analytical Procedure Development) will provide a golden opportunity to harmonize the definition of new QbD concepts such as the ATP.A nalytical technology, method development, validation, and technical transfers are encountered across many manufacturing industries, including the pharmaceutical, fine
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.