The dicarbene gold(I) complex [Au(9-methylcaffein-8-ylidene)2 ]BF4 is an exceptional organometallic compound of profound interest as a prospective anticancer agent. This gold(I) complex was previously reported to be highly cytotoxic toward various cancer cell lines in vitro and behaves as a selective G-quadruplex stabilizer. Interactions of the gold complex with various telomeric DNA models have been analyzed by a combined ESI MS and X-ray diffraction (XRD) approach. ESI MS measurements confirmed formation of stable adducts between the intact gold(I) complex and Tel 23 DNA sequence. The crystal structure of the adduct formed between [Au(9-methylcaffein-8-ylidene)2 ](+) and Tel 23 DNA G-quadruplex was solved. Tel 23 maintains a characteristic propeller conformation while binding three gold(I) dicarbene moieties at two distinct sites. Stacking interactions appear to drive noncovalent binding of the gold(I) complex. The structural basis for tight gold(I) complex/G-quadruplex recognition and its selectivity are described.
Telomeric G-quadruplexes have recently emerged as drug targets in cancer research. Herein, we present the first NMR structure of a telomeric DNA G-quadruplex that adopts the biologically relevant hybrid-2 conformation in a ligand-bound state. We solved the complex with a metalorganic gold(III) ligand that stabilizes G-quadruplexes. Analysis of the free and bound structures reveals structural changes in the capping region of the G-quadruplex. The ligand is sandwiched between one terminal G-tetrad and a flanking nucleotide. This complex structure involves a major structural rearrangement compared to the free G-quadruplex structure as observed for other G-quadruplexes in different conformations, invalidating simple docking approaches to ligand-G-quadruplex structure determination.
The dicarbene gold(I) complex [Au(9-methylcaffein-8-ylidene) 2 ]BF 4 is an exceptional organometallic compound of profound interest as ap rospective anticancer agent. This gold(I) complex was previously reported to be highly cytotoxic toward various cancer cell lines in vitro and behaves as aselective G-quadruplex stabilizer.Interactions of the gold complex with various telomeric DNAm odels have been analyzed by ac ombined ESI MS and X-ray diffraction (XRD) approach.ESI MS measurements confirmed formation of stable adducts between the intact gold(I) complex and Tel23 DNAs equence.T he crystal structure of the adduct formed between [Au(9-methylcaffein-8-ylidene) 2 ] + and Tel2 3D NA G-quadruplex was solved. Tel2 3maintains ac haracteristic propeller conformation while binding three gold(I) dicarbene moieties at two distinct sites.S tacking interactions appear to drive noncovalent binding of the gold(I) complex. The structural basis for tight gold(I) complex/G-quadruplex recognition and its selectivity are described.Supportinginformation and the ORCID identification number(s) for the author(s) of this article can be found under http://dx.
The interaction between 13-phenylalkyl and 13-diphenylalkyl berberine derivatives (NAX) and human telomeric DNA G4 structures has been investigated by both spectroscopic and crystallographic methods. NAX042 and NAX053 are the best compounds improving the performance of the natural precursor berberine. This finding is in agreement with the X-ray diffraction result for the NAX053-Tel12 adduct, showing the ligand which interacts via π-stacking, sandwiched at the interface of two symmetry-related quadruplex units, with its benzhydryl group contributing to the overall stability of the adduct by means of additional π-stacking interactions with the DNA residues. The berberine derivatives were also investigated for their cytotoxic activity towards a panel of human cancer cell lines. Compounds NAX042 and NAX053 affect the viability of cancer cell lines in a dose-dependent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.