In the present paper, an improved multiscale modeling aimed at describing membrane fouling in the UltraFiltration (UF) process was proposed. Some of the authors of this work previously published a multiscale approach to simulate ultrafiltration of Bovine Serum Albumin (BSA) aqueous solutions. However, the noncovalent interactions between proteins and the membrane surface were not taken into account in the previous formulation. Herein, the proteins-surface interactions were accurately computed by first-principle-based calculations considering also the effect of pH. Both the effective surface of polysulfone (PSU) and the first layer of proteins adsorbed on the membrane surface were accurately modeled. Different from the previous work, the equilibrium distance between proteins was calculated and imposed as lower bound to the protein-protein distances in the compact deposit accumulated on the membrane surface. The computed BSA surface charges were used to estimate the protein potential and the charge density, both necessary to formulate a forces balance at microscopic scale. The protein surface potential was compared with Z-potential measurements of BSA aqueous solution, and a remarkable agreement was found. Finally, the overall additional resistance, as due to both the compact and loose layers of the deposit, was computed, thus allowing the final transition to a macroscopic scale, where an unsteady-state mass transfer model was formulated to describe the behavior of a typical dead-end UF process. A good agreement between simulated and experimental permeate flux decays was observed.
Adsorption of the phosphotriesterase on a polysulfone membrane surface was investigated in this paper through a double-scale computational approach. Surface charges of the enzyme, as well as membrane, were calculated at sub and nanoscale while protein adsorption was simulated at larger scale. Adsorption energies were calculated as a function of the enzyme–surface distance, and for each distance, several protein rotations were tested to find the most stable orientations of the macromolecule. The results of this model were useful in obtaining information about the adhesion of the enzyme and to give indications on the orientations of its binding site. Adsorption energies agreed with the literature data. Furthermore, the binding site of the immobilized phosphotriesterase was less accessible with respect to native enzymes due to the steric hindrance of the polymer surface; thus, a reduction of its efficiency is expected. The proposed methodology made use of fundamental quantities, calculated without resorting to adjustable or empirical parameters, providing basic outputs useful for ascertaining enzymatic catalysis rate.
The casting and preparation of ultrafiltration ZnO modified cellulose acetate membrane (CA/ZnO) were investigated in this work. CA membranes were fabricated by phase inversion using dimethylformamide (DMF) as a solvent and ZnO as nanostructures materials. Ultrafiltration (UF) performance, mechanical stability, morphology, contact angle, and porosity were evaluated on both CA- and ZnO-modified CA samples. Scanning electron microscopy (SEM) was used to determine the morphology of the membranes, showing different pore sizes either on rough surfaces and cross-sections of the samples, an asymmetric structure and ultra-scale pores with an average pore radius 0.0261 to 0.045 µm. Contact angle measurements showed the highest hydrophobicity values for the samples with no ZnO addition, ranging between 48° and 82.7° on their airside. The permeability values decreased with the increasing CA concentration in the casting solution, as expected; however, ZnO-modified membranes produced lower flux than the pure CA ones. Nevertheless, ZnO modified CA membranes have higher surface pore size, pore density and porosity, and improved surface hydrophilicity compared with pure CA membranes. The results indicated that the incorporated nano-ZnO tends to limit the packing of the polymer chains onto the membrane structure while showing antifouling properties leading to better hydrophilicity and permeation with consistent UF applications.
This work aimed to investigate the degradation performance of natural cellulose acetate (CA) membranes filled with ZnO nanostructures. Photocatalytic degradation of reactive toxic dye methylene blue (MB) was studied as a model reaction using UV light. A CA membrane was previously casted and fabricated through the phase inversion processes and laboratory-synthesized ZnO microparticles as filler. The prepared membrane was characterized for pore size, ultrafiltration (UF) performance, porosity, morphology using scanning electron micrographs (SEM), water contact angle and catalytic degradation of MB. The prepared membrane shows a significant amount of photocatalytic oxidation under UV. The photocatalytic results under UV-light radiation in CA filled with ZnO nanoparticles (CA/ZnO) demonstrated faster and more efficient MB degradation, resulting in more than 30% of initial concentration. The results also revealed how the CA/ZnO combination effectively improves the membrane’s photocatalytic activity toward methylene blue (MB), showing that the degradation process of dye solutions to UV light is chemically and physically stable and cost-effective. This photocatalytic activity toward MB of the cellulose acetate membranes has the potential to make these membranes serious competitors for removing textile dye and other pollutants from aqueous solutions. Hence, polymer–ZnO composite membranes were considered a valuable and attractive topic in membrane technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.