We report the first observation of gate-controlled field emission current from a tungsten diselenide (WSe2) monolayer, synthesized by chemical-vapour deposition on SiO2/Si substrate. Ni contacted WSe2 monolayer back-gated transistors, under high vacuum, exhibit n-type conduction and drain-bias dependent transfer characteristics, which are attributed to oxygen/water desorption and drain induced Schottky barrier lowering, respectively. The gate-tuned n-type conduction enables field emission, i.e. the extraction of electrons by quantum tunnelling, even from the flat part of the WSe2 monolayers. Electron emission occurs under an electric field ~100 V μm −1 and exhibit good time stability. Remarkably, the field emission current can be modulated by the back-gate voltage. The first field-emission vertical transistor based on WSe2 monolayer is thus demonstrated and can pave the way to further optimize new WSe2 based devices for use in vacuum electronics.
We discuss the origin of an additional dip other than the charge neutrality point observed in the transfer characteristics of graphene-based field-effect transistors with a Si/SiO2 substrate used as the back-gate. The double dip is proved to arise from charge transfer between the graphene and the metal electrodes, while charge storage at the graphene/SiO2 interface can make it more evident. Considering a different Fermi energy from the neutrality point along the channel and partial charge pinning at the contacts, we propose a model which explains all the features observed in the gate voltage loops. We finally show that the double dip enhanced hysteresis in the transfer characteristics can be exploited to realize graphene-based memory devices.
We fabricate back-gated field effect transistors using Niobium electrodes on mechanically exfoliated monolayer graphene and perform electrical characterization in the pressure range from atmospheric down to 10 -4 mbar. We study the effect of room temperature vacuum degassing and report asymmetric transfer characteristics with a resistance plateau in the n-branch. We show that weakly chemisorbed Nb acts as p-dopant on graphene and explain the transistor characteristics by Nb/graphene interaction with unpinned Fermi level at the interface.
We investigate the effect of Rashba spin-orbit coupling and of a tunnel barrier on the zero conductance resonances appearing in a one-dimensional conducting Aharonov-Bohm (AB) ring symmetrically coupled to two leads. The transmission function of the corresponding one-electron problem is derived within the scattering matrix approach and analyzed in the complex energy plane with focus on the role of the tunnel barrier strength on the zero-pole structure characteristic of transmission (anti)resonances. The lifting of the real conductance zeros is related to the breaking of the spin-reversal symmetry and time-reversal symmetry of Aharonov-Casher (AC)and AB rings, as well as to rotational symmetry breaking in presence of a tunnel barrier. We show that the polarization direction of transmitted electrons can be controlled via the tunnel barrier strength and discuss a novel spin-filtering design in one-dimensional rings with tunable spin-orbit interaction. 71.70.Ej,
Pure spin currents are shown to be generated by an electrically controlled quantum pump applied at the edges of a topological insulator. The electric rather than the more conventional magnetic control offers several advantages and avoids, in particular, the necessity of delicate control of magnetization dynamics over tiny regions. The pump is implemented by pinching the sample at two quantum point contacts and phase modulating two external gate voltages between them. The spin current is generated for the full range of parameters. On the other hand, pumping via amplitude modulation of the interboundary couplings generates both charge and spin currents, with a pure charge current appearing only for special values of the parameters for which the Aharonov-Bohm flux takes integer values. Our setup can therefore serve to fingerprint the helical nature of the edges states with the zeros of the pumped spin and charge currents occurring at distinct universal locations where the Fabry-Pérot or the Aharonov-Bohm phases take integer values
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.