The high-bias electrical characteristics of back-gated field-effect transistors with chemical vapor deposition synthesized bilayer MoS 2 channel and Ti Schottky contacts are discussed. It is found that oxidized Ti contacts on MoS 2 form rectifying junctions with ≈0.3 to 0.5 eV Schottky barrier height. To explain the rectifying output characteristics of the transistors, a model is proposed based on two slightly asymmetric back-to-back Schottky barriers, where the highest current arises from image force barrier lowering at the electrically forced junction, while the reverse current is due to Schottkybarrier-limited injection at the grounded junction. The device achieves a photoresponsivity greater than 2.5 A W −1 under 5 mW cm −2 white-LED light. By comparing two-and four-probe measurements, it is demonstrated that the hysteresis and persistent photoconductivity exhibited by the transistor are peculiarities of the MoS 2 channel rather than effects of the Ti/MoS 2 interface.
Few-layer palladium diselenide (PdSe 2 ) field effect transistors are studied under external stimuli such as electrical and optical fields, electron irradiation, and gas pressure. The ambipolar conduction and hysteresis are observed in the transfer curves of the as-exfoliated and unprotected PdSe 2 material. The ambipolar conduction and its hysteretic behavior in the air and pure nitrogen environments are tuned. The prevailing p-type transport observed at atmospheric pressure is reversibly turned into a dominant n-type conduction by reducing the pressure, which can simultaneously suppress the hysteresis. The pressure control can be exploited to symmetrize and stabilize the transfer characteristics of the device as required in highperformance logic circuits. The transistors are affected by trap states with characteristic times in the order of minutes. The channel conductance, dramatically reduced by the electron irradiation during scanning electron microscope imaging, is restored after an annealing of several minutes at room temperature. The work paves the way toward the exploitation of PdSe 2 in electronic devices by providing an experiment-based and deep understanding of charge transport in PdSe 2 transistors subjected to electrical stress and other external agents.
We report the first observation of gate-controlled field emission current from a tungsten diselenide (WSe2) monolayer, synthesized by chemical-vapour deposition on SiO2/Si substrate. Ni contacted WSe2 monolayer back-gated transistors, under high vacuum, exhibit n-type conduction and drain-bias dependent transfer characteristics, which are attributed to oxygen/water desorption and drain induced Schottky barrier lowering, respectively. The gate-tuned n-type conduction enables field emission, i.e. the extraction of electrons by quantum tunnelling, even from the flat part of the WSe2 monolayers. Electron emission occurs under an electric field ~100 V μm −1 and exhibit good time stability. Remarkably, the field emission current can be modulated by the back-gate voltage. The first field-emission vertical transistor based on WSe2 monolayer is thus demonstrated and can pave the way to further optimize new WSe2 based devices for use in vacuum electronics.
Field emission electron sources in vacuum electronics are largely considered to achieve faster response, higher efficiency and lower energy consumption in comparison with conventional thermionic emitters. Carbon nanotubes had a leading role in renewing attention to field emission technologies in the early 1990s, due to their exceptional electron emitting properties enabled by their large aspect ratio, high electrical conductivity, and thermal and chemical stability. In the last decade, the search for improved emitters has been extended to several carbon nanostructures, comprising carbon nanotubes, either individual or films, diamond structures, graphitic materials, graphene, etc. Here, we review the main results in the development of carbon-based field emitters.
We study the effect of electric stress, gas pressure and gas type on the hysteresis in the transfer characteristics of monolayer molybdenum disulfide (MoS 2 ) field effect transistors. The presence of defects and point vacancies in the MoS 2 crystal structure facilitates the adsorption of oxygen, nitrogen, hydrogen or methane, which strongly affect the transistor electrical characteristics. Although the gas adsorption does not modify the conduction type, we demonstrate a correlation between hysteresis width and adsorption energy onto the MoS 2 surface. We show that hysteresis is controllable by pressure and/or gas type. Hysteresis features two well-separated current levels, especially when gases are stably adsorbed on the channel, which can be exploited in memory devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.