The high-bias electrical characteristics of back-gated field-effect transistors with chemical vapor deposition synthesized bilayer MoS 2 channel and Ti Schottky contacts are discussed. It is found that oxidized Ti contacts on MoS 2 form rectifying junctions with ≈0.3 to 0.5 eV Schottky barrier height. To explain the rectifying output characteristics of the transistors, a model is proposed based on two slightly asymmetric back-to-back Schottky barriers, where the highest current arises from image force barrier lowering at the electrically forced junction, while the reverse current is due to Schottkybarrier-limited injection at the grounded junction. The device achieves a photoresponsivity greater than 2.5 A W −1 under 5 mW cm −2 white-LED light. By comparing two-and four-probe measurements, it is demonstrated that the hysteresis and persistent photoconductivity exhibited by the transistor are peculiarities of the MoS 2 channel rather than effects of the Ti/MoS 2 interface.
Few-layer palladium diselenide (PdSe 2 ) field effect transistors are studied under external stimuli such as electrical and optical fields, electron irradiation, and gas pressure. The ambipolar conduction and hysteresis are observed in the transfer curves of the as-exfoliated and unprotected PdSe 2 material. The ambipolar conduction and its hysteretic behavior in the air and pure nitrogen environments are tuned. The prevailing p-type transport observed at atmospheric pressure is reversibly turned into a dominant n-type conduction by reducing the pressure, which can simultaneously suppress the hysteresis. The pressure control can be exploited to symmetrize and stabilize the transfer characteristics of the device as required in highperformance logic circuits. The transistors are affected by trap states with characteristic times in the order of minutes. The channel conductance, dramatically reduced by the electron irradiation during scanning electron microscope imaging, is restored after an annealing of several minutes at room temperature. The work paves the way toward the exploitation of PdSe 2 in electronic devices by providing an experiment-based and deep understanding of charge transport in PdSe 2 transistors subjected to electrical stress and other external agents.
We study the effect of electric stress, gas pressure and gas type on the hysteresis in the transfer characteristics of monolayer molybdenum disulfide (MoS 2 ) field effect transistors. The presence of defects and point vacancies in the MoS 2 crystal structure facilitates the adsorption of oxygen, nitrogen, hydrogen or methane, which strongly affect the transistor electrical characteristics. Although the gas adsorption does not modify the conduction type, we demonstrate a correlation between hysteresis width and adsorption energy onto the MoS 2 surface. We show that hysteresis is controllable by pressure and/or gas type. Hysteresis features two well-separated current levels, especially when gases are stably adsorbed on the channel, which can be exploited in memory devices.
Platinum diselenide (PtSe 2 ) field-effect transistors with ultrathin channel regions exhibit p-type electrical conductivity that is sensitive to temperature and environmental pressure. Exposure to a supercontinuum white light source reveals that positive and negative photoconductivity coexists in the same device. The dominance of one type of photoconductivity over the other is controlled by environmental pressure. Indeed, positive photoconductivity observed in high vacuum converts to negative photoconductivity when the pressure is raised. Density functional theory calculations confirm that physisorbed oxygen molecules on the PtSe 2 surface act as acceptors. The desorption of oxygen molecules from the surface, caused by light irradiation, leads to decreased carrier concentration in the channel conductivity. The understanding of the charge transfer occurring between the physisorbed oxygen molecules and the PtSe 2 film provides an effective route for modulating the density of carriers and the optical properties of the material.
Schottky barriers (SBs) are often formed at the semiconductor/metal contacts and affect the electrical behavior of semiconductor devices. In particular, SBs are playing a major role in the investigation of the electrical properties of mono and 2D nanostructured materials, although their impact on the current–voltage characteristics is frequently neglected or misunderstood. In this work, a single equation is proposed to describe the current–voltage characteristics of two‐terminal semiconductor devices with Schottky contacts. The equation is applied to numerically simulate the electrical behavior for both ideal and nonideal SBs. The proposed model can be used to directly estimate the SB height and the ideality factor. It is applied to perfectly reproduce the experimental current–voltage characteristics of ultrathin molybdenum disulfide or tungsten diselenide nanosheets and tungsten disulfide nanotubes. The model constitutes a useful tool for the analysis and the extraction of relevant transport parameters in any two‐terminal device with Schottky contacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.