The continuously growing number of objects orbiting around the Earth is expected to be accompanied by an increasing frequency of objects re-entering the Earth’s atmosphere. Many of these re-entries will be uncontrolled, making their prediction challenging and subject to several uncertainties. Traditionally, re-entry predictions are based on the propagation of the object’s dynamics using state-of-the-art modelling techniques for the forces acting on the object. However, modelling errors, particularly related to the prediction of atmospheric drag, may result in poor prediction accuracies. In this context, we explored the possibility of performing a paradigm shift, from a physics-based approach to a data-driven approach. To this aim, we present the development of a deep learning model for the re-entry prediction of uncontrolled objects in Low Earth Orbit (LEO). The model is based on a modified version of the Sequence-to-Sequence architecture and is trained on the average altitude profile as derived from a set of Two-Line Element (TLE) data of over 400 bodies. The novelty of the work consists in introducing in the deep learning model, alongside the average altitude, and three new input features: a drag-like coefficient (B*), the average solar index, and the area-to-mass ratio of the object. The developed model was tested on a set of objects studied in the Inter-Agency Space Debris Coordination Committee (IADC) campaigns. The results show that the best performances are obtained on bodies characterised by the same drag-like coefficient and eccentricity distribution as the training set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.