This paper presents the Open Knowledge Extraction (OKE) tools combined with natural language analysis of the sentence in order to enrich the semantic of the legal knowledge extracted from legal text. In particular the use case is on international private law with specific regard to the Rome I Regulation EC 593/2008, Rome II Regulation EC 864/2007, and Brussels I bis Regulation EU 1215/2012. A Knowledge Graph (KG) is built using OKE and Natural Language Processing (NLP) methods jointly with the main ontology design patterns defined for the legal domain (e.g., event, time, role, agent, right, obligations, jurisdiction). Using critical questions, underlined by legal experts in the domain, we have built a question answering tool capable to support the information retrieval and to answer to these queries. The system should help the legal expert to retrieve the relevant legal information connected with topics, concepts, entities, normative references in order to integrate his/her searching activities.
We propose a new method for explanations in Artificial Intelligence (AI) and a tool to test its expressive power within a user interface. In order to bridge the gap between philosophy and humancomputer interfaces, we show a new approach for the generation of interactive explanations based on a sophisticated pipeline of AI algorithms for structuring natural language documents into knowledge graphs, answering questions effectively and satisfactorily. Among the mainstream philosophical theories of explanation we identified one that in our view is more easily applicable as a practical model for user-centric tools: Achinstein's Theory of Explanation. With this work we aim to prove that the theory proposed by Achinstein can be actually adapted for being implemented into a concrete software application, as an interactive process answering questions. To this end we found a way to handle the generic (archetypal) questions that implicitly characterise an explanatory processes as preliminary overviews rather than as answers to explicit questions, as commonly understood. To show the expressive power of this approach we designed and implemented a pipeline of AI algorithms for the generation of interactive explanations under the form of overviews, focusing on this aspect of explanations rather than on existing interfaces and presentation logic layers for question answering. Accordingly, through the identification of a minimal set of archetypal questions it is possible to create a generator of explanatory overviews that is generic enough to significantly ease the acquisition of knowledge by humans, regardless of the specificities of the users outside of a minimum set of very broad requirements (e.g. people able to read and understand English and capable of performing basic common-sense reasoning). We tested our hypothesis on a well-known XAI-powered credit approval system by IBM, comparing CEM, a static explanatory tool for post-hoc explanations, with an extension we developed adding interactive explanations based on our model. The results of the user study, involving more than 100 participants, showed that our proposed solution produced a statistically relevant improvement on effectiveness (U=931.0, p=0.036) over the baseline, thus giving evidence in favour of our theory.
Through the General Data Protection Regulation (GDPR), the European Union has set out its vision for Automated Decision-Making (ADM) and AI, which must be reliable and human-centred. In particular we are interested on the Right to Explanation, that requires industry to produce explanations of ADM. The High-Level Expert Group on Artificial Intelligence (AI-HLEG), set up to support the implementation of this vision, has produced guidelines discussing the types of explanations that are appropriate for user-centred (interactive) Explanatory Tools. In this paper we propose our version of Explanatory Narratives (EN), based on user-centred concepts drawn from ISO 9241, as a model for user-centred explanations aligned with the GDPR and the AI-HLEG guidelines. Through the use of ENs we convert the problem of generating explanations for ADM into the identification of an appropriate path over an Explanatory Space, allowing explainees to interactively explore it and produce the explanation best suited to their needs. To this end we list suitable exploration heuristics, we study the properties and structure of explanations, and discuss the proposed model identifying its weaknesses and strengths.
The main goal of this research is to produce a useful software for United Nations (UN), that could help to speed up the process of qualifying the UN documents following the Sustainable Development Goals (SDGs) in order to monitor the progresses at the world level to fight poverty, discrimination, climate changes. In fact human labeling of UN documents would be a daunting task given the size of the impacted corpus. Thus, automatic labeling must be adopted at least as a first step of a multi-phase process to reduce the overall effort of cataloguing and classifying. Deep Learning (DL) is nowadays one of the most powerful tools for state-of-the-art (SOTA) AI for this task, but very often it comes with the cost of an expensive and error-prone preparation of a training-set. In the case of multi-label text classification of domain-specific text it seems that we cannot effectively adopt DL without a big-enough domain-specific training-set. In this paper, we show that this is not always true. In fact we propose a novel method that is able, through statistics like TF-IDF, to exploit pretrained SOTA DL models (such as the Universal Sentence Encoder) without any need for traditional transfer learning or any other expensive training procedure. We show the effectiveness of our method in a legal context, by classifying UN Resolutions according to their most related SDGs.
On 21 April 2021, the European Commission proposed the first legal framework on Artificial Intelligence (AI) to address the risks posed by this emerging method of computation. The Commission proposed a Regulation known as the AI Act. The proposed AI Act considers not only machine learning, but expert systems and statistical models long in place. Under the proposed AI Act, new obligations are set to ensure transparency, lawfulness, and fairness. Their goal is to establish mechanisms to ensure quality at launch and throughout the whole life cycle of AI-based systems, thus ensuring legal certainty that encourages innovation and investments on AI systems while preserving fundamental rights and values. A standardisation process is ongoing: several entities (e.g., ISO) and scholars are discussing how to design systems that are compliant with the forthcoming Act, and explainability metrics play a significant role. Specifically, the AI Act sets some new minimum requirements of explicability (transparency and explainability) for a list of AI systems labelled as “high-risk” listed in Annex III. These requirements include a plethora of technical explanations capable of covering the right amount of information, in a meaningful way. This paper aims to investigate how such technical explanations can be deemed to meet the minimum requirements set by the law and expected by society. To answer this question, with this paper we propose an analysis of the AI Act, aiming to understand (1) what specific explicability obligations are set and who shall comply with them and (2) whether any metric for measuring the degree of compliance of such explanatory documentation could be designed. Moreover, by envisaging the legal (or ethical) requirements that such a metric should possess, we discuss how to implement them in a practical way. More precisely, drawing inspiration from recent advancements in the theory of explanations, our analysis proposes that metrics to measure the kind of explainability endorsed by the proposed AI Act shall be risk-focused, model-agnostic, goal-aware, intelligible, and accessible. Therefore, we discuss the extent to which these requirements are met by the metrics currently under discussion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.