A plasma focus is being developed for breeding short-lived radionuclides. The different radiation protection issues and concerns posed by the machine once in operation are analysed and discussed. Activation is shown to be totally negligible and likewise neutron emission is found to pose no concern at all. The only source of radiation risk is found to rest in the radionuclides produced, 18F and 15 O, generating a peak exposure of 1.114 Sv y(-1) at the distance of closest approach of 2.5 m. Shielding to protect against this hazard is calculated to be 5 cm Pb or 54 cm concrete for the operation area and 5.5 cm Pb for the transportation flask.
In x-ray fluorescence spectroscopy, a photon beam is focused on the sample to stimulate the emission of characteristic radiation. Even if a qualitative interpretation of the measurements is simple, a quantitative analysis is not straightforward because the primary photons are produced deep in the target and the properties of the radiation that reaches the detector are modified significantly by the interactions undergone before leaving the specimen. Understanding how the emission spectra are influenced by interactions with matter is a central problem in fluorescence analysis. In this work, by using the 3D transport equation, we found that not only the composition of the specimen but also the geometry of the system plays an important role in determining the properties of the radiation field, denoting by geometry the shape of the target, the direction of the incoming beam and the observation angle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.