A methodology for identifying prehistoric local learning communities is proposed. We wish to test possible relationships among communities based on continuity and variability in lithic reduction sequence technological traits with different visibility and malleability. Quantitative features reflecting different technological traits are measured on 3-D models of flint cores in different scales: the ratio between core thickness and reduction surface width, the angle between subsequent bands of production blank scars to the relative striking platform, and the average curvature of the ridge between each blank scar striking platform pair. Continuity and variability in these features are used to establish the relations among lithic assemblages on different hierarchical levels: local learning communities and geographically widespread cultural lineages.The Late Upper Palaeolithic and the Epipalaeolithic of the Southern Levant (ca. 27,000-15,000 cal BP) provide an opportunity to test our method. A progressive increase in territoriality is hypothesized throughout this timespan, yet the precise timing and modes of this phenomenon need to be defined. The present study analyzes six core assemblages attributed to different cultural entities, representing chronologically separated occupations of the Ein Gev area and the coastal Sharon Plain. Continuity in technological traits between the Atlitian (ca. 27,000-26,000 cal BP) and Nizzanan (ca. 20,000-18,500 cal BP) occupations of the Ein Gev area suggests that the same learning community repeatedly settled there during a long time span. Two geographically separate learning communities were defined in the study areas within the Kebaran cultural entity (ca. 24,000-18,000 cal BP); the group occupying the Ein Gev area possibly continued to settle there during the Geometric Kebaran (ca. 18,000-15,000 cal BP). Continuity in more conservative traits of the reduction sequence allows to tie these two communities to the same cultural lineage. The ability to track prehistoric learning communities based on quantitative features helps increase the objectivity and the resolution in the reconstruction of past cultural dynamics.
Nineteen broken and complete bone fish hooks and six grooved stones recovered from the Epipaleolithic site of Jordan River Dureijat in the Hula Valley of Israel represent the largest collection of fishing technology from the Epipaleolithic and Paleolithic periods. Although Jordan River Dureijat was occupied throughout the Epipaleolithic (~20–10 kya the fish hooks appear only at the later stage of this period (15,000–12,000 cal BP). This paper presents a multidimensional study of the hooks, grooved stones, site context, and the fish assemblage from macro and micro perspectives following technological, use wear, residue and zooarchaeological approaches. The study of the fish hooks reveals significant variability in hook size, shape and feature type and provides the first evidence that several landmark innovations in fishing technology were already in use at this early date. These include inner and outer barbs, a variety of line attachment techniques including knobs, grooves and adhesives and some of the earliest evidence for artificial lures. Wear on the grooved stones is consistent with their use as sinkers while plant fibers recovered from the grooves of one hook shank and one stone suggest the use of fishing line. This together with associations between the grooved stones and hooks in the same archaeological layers, suggests the emergence of a sophisticated line and hook technology. The complexity of this technology is highlighted by the multiple steps required to manufacture each component and combine them into an integrated system. The appearance of such technology in the Levantine Epipaleolithic record reflects a deep knowledge of fish behavior and ecology. This coincides with significant larger-scale patterns in subsistence evolution, namely broad spectrum foraging, which is an important first signal of the beginning of the transition to agriculture in this region.
The study of artifacts is fundamental to archaeological research. The features of individual artifacts are recorded, analyzed, and compared within and between contextual assemblages. Here we present and make available for academic-use Artifact3-D, a new software package comprised of a suite of analysis and documentation procedures for archaeological artifacts. We introduce it here, alongside real archaeological case studies to demonstrate its utility. Artifact3-D equips its users with a range of computational functions for accurate measurements, including orthogonal distances, surface area, volume, CoM, edge angles, asymmetry, and scar attributes. Metrics and figures for each of these measurements are easily exported for the purposes of further analysis and illustration. We test these functions on a range of real archaeological case studies pertaining to tool functionality, technological organization, manufacturing traditions, knapping techniques, and knapper skill. Here we focus on lithic artifacts, but the Artifact3-D software can be used on any artifact type to address the needs of modern archaeology. Computational methods are increasingly becoming entwined in the excavation, documentation, analysis, database creation, and publication of archaeological research. Artifact3-D offers functions to address every stage of this workflow. It equips the user with the requisite toolkit for archaeological research that is accurate, objective, repeatable and efficient. This program will help archaeological research deal with the abundant material found during excavations and will open new horizons in research trajectories.
There is a paucity of Palaeolithic art in the southern Levant prior to 15 000 years ago. The Natufian culture (15 000–11 500 BP; Grosman 2013) marks a threshold in the magnitude and diversity of artistic manifestations (Bar-Yosef 1997). Nevertheless, depictions of the human form remain rare—only a few representations of the human face have been reported to date. This article presents a 12 000-year-old example unearthed at the Late Natufian site of Nahal Ein Gev II (NEGII), just east of the Sea of Galilee, Israel (Figure 1). The object provides a glimpse into Natufian conventions of human representation, and opens a rare opportunity for deeper understanding of the Natufian symbolic system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.