The MBT-CBT proxy for the reconstruction of paleotemperatures and past soil pH is based on the distribution of branched glycerol dialkyl glycerol tetraether (brGDGT) membrane lipids. The Methylation of Branched Tetraether (MBT) and the Cyclisation of Branched Tetraether (CBT) indices were developed to quantify these distributions, and significant empirical relations between these indices and annual mean air temperature (MAT) and/or soil pH were found in a large data set of soils. In this study, we extended this soil dataset to 278 globally distributed surface soils. Of these soils, 26% contains all nine brGDGTs, while in 63% of the soils the seven most common brGDGTs were detected, and the latter were selected for calibration purposes. This resulted in new transfer functions for the reconstruction of pH based on the CBT index: pH = 7.90-1.97 Â CBT (r 2 = 0.70; RMSE = 0.8; n = 176), as well as for MAT based on the CBT index and methylation index based on the seven most abundant GDGTs (defined as MBT 0 ): MAT = 0.81-5.67 Â CBT + 31.0 Â MBT 0 (r 2 = 0.59; RMSE = 5.0°C; n = 176). The new transfer function for MAT has a substantially lower correlation coefficient than the original equation (r 2 = 0.77). To investigate possible improvement of the correlation, we used our extended global surface soil dataset to statistically derive the indices that best describe the relations of brGDGT composition with MAT and soil pH. These new indices, however, resulted in only a relatively minor increase in correlation coefficients, while they cannot be explained straightforwardly by physiological mechanisms. The large scatter in the calibration cannot be fully explained by local factors or by seasonality, but MAT for soils from arid regions are generally substantially (up to 20°C) underestimated, suggesting that absolute brGDGT-based temperature records for these areas should be interpreted with caution.The applicability of the new MBT 0 -CBT calibration function was tested using previously published MBT-CBT-derived paleotemperature records covering the last deglaciation in Central Africa and East Asia, the Eocene-Oligocene boundary and the Paleocene-Eocene thermal maximum. The results show that trends remain similar in all records, but that absolute temperature estimates and the amplitude of temperature changes are lower for most records, and generally in better agreement with independent proxy data.
Palaeoclimate reconstructions of periods with warm climates and high atmospheric CO concentrations are crucial for developing better projections of future climate change. Deep-ocean and high-latitude palaeotemperature proxies demonstrate that the Eocene epoch (56 to 34 million years ago) encompasses the warmest interval of the past 66 million years, followed by cooling towards the eventual establishment of ice caps on Antarctica. Eocene polar warmth is well established, so the main obstacle in quantifying the evolution of key climate parameters, such as global average temperature change and its polar amplification, is the lack of continuous high-quality tropical temperature reconstructions. Here we present a continuous Eocene equatorial sea surface temperature record, based on biomarker palaeothermometry applied on Atlantic Ocean sediments. We combine this record with the sparse existing data to construct a 26-million-year multi-proxy, multi-site stack of Eocene tropical climate evolution. We find that tropical and deep-ocean temperatures changed in parallel, under the influence of both long-term climate trends and short-lived events. This is consistent with the hypothesis that greenhouse gas forcing, rather than changes in ocean circulation, was the main driver of Eocene climate. Moreover, we observe a strong linear relationship between tropical and deep-ocean temperatures, which implies a constant polar amplification factor throughout the generally ice-free Eocene. Quantitative comparison with fully coupled climate model simulations indicates that global average temperatures were about 29, 26, 23 and 19 degrees Celsius in the early, early middle, late middle and late Eocene, respectively, compared to the preindustrial temperature of 14.4 degrees Celsius. Finally, combining proxy- and model-based temperature estimates with available CO reconstructions yields estimates of an Eocene Earth system sensitivity of 0.9 to 2.3 kelvin per watt per square metre at 68 per cent probability, consistent with the high end of previous estimates.
Soil organic matter (SOM) in allophanic soils is supposed to accumulate due to protection caused by binding to allophane, aluminium and iron. We investigated a catena of allophanic and non-allophanic soils in Costa Rica to determine the effect of such binding mechanisms on SOM chemistry. These soils contain no contribution of black carbon. Molecular characterization of litter, extractable and dispersed organic matter was done by Curie-point pyrolysis-GC/MS. The molecular chemistry of the organic fractions indicates a strong decomposition of plant-derived organic matter and a strong contribution of microbial sugars and N-compounds to SOM. Both the decomposition of plant-derived SOM -including that of relatively recalcitrant compounds -and the relative contribution of microbial SOM were greater in allophanic samples than in non-allophanic ones. This suggests that chemical protection does not act on primary OM, although it may influence the accumulation of secondary OM in these soils. The effect of allophane on SOM contents in such perhumid soils is probably through incorporation of decomposition products and microbial SOM in very fine aggregates that -in a perhumid environment -remain saturated with water during much of the year. Greater concentrations of aliphatics are found in allophanic residues, but there is no evidence of any specific mineral-organic binding. The results do not support the existing theory of chemical protection of plant-derived components through binding to allophane, iron and aluminium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.