CD146 is a cell-surface molecule belonging to the immunoglobulin superfamily and expressed in all types of human endothelial cells. Confocal and electron microscopic analysis of confluent human umbilical vein endothelial cells (HUVECs) were used to demonstrate that CD146 is a component of the endothelial junction. Double immunolabeling with vascular endothelial cadherin showed that CD146 is localized outside the adherens junction.Moreover, CD146 expression is not restricted to the junction, since part of the labeling was detectable at the apical side of the HUVECs. Interestingly, cell-surface expression of CD146 increased when HUVECs reached confluence. In addition, the paracellular permeability of CD146-transfected fibroblast cells was decreased compared with that of control cells. Finally, CD146 colocalized with actin, was partly resistant to Triton X-100 extraction, and had its expression altered by actindisrupting agents, indicating that CD146 is associated with the actin cytoskeleton. These results show the regulated expression of CD146 at areas of cell-cell junction and strongly suggest involvement of CD146 as a mediator of cell-cell interaction. ( IntroductionThe vascular endothelium forms a continuous monolayer on the inner surface of the vessel wall and plays a pivotal role in regulating blood flow, vascular permeability, thrombogenesis, and hematogenous metastasis. 1 Positioned at the interface between blood and tissues, quiescent endothelial cells (ECs) generate an antithrombotic surface equipped to respond quickly to biologic needs. 2 The endothelial monolayer requires highly effective intercellular junctions that control the contact between adjacent cells and the trafficking of circulating blood cells. 3,4 At least 2 types of cell-cell junctional structures have been identified in the endothelium: adherens junctions (AJs) and tight junctions (TJs). These play a central part in the control of paracellular permeability and maintenance of cell polarity. [5][6][7] The junctions are tightly regulated structures composed of several adhesion molecules interacting with cytoskeletal proteins. Among the adhesive molecules, the endothelium-specific cadherin 5 or vascular endothelial cadherin (VEcadherin) 8,9 is localized in AJs, whereas the junctional adhesion molecule (JAM) 10 was reported to be present in TJs. Other molecules, such as platelet endothelial cell adhesion molecule 1 (PECAM-1)/CD31, are not restricted to one type of junctional structure, and their specific localization appears to be important to their vascular functions. 11,12 The S-Endo 1-associated antigen (CD146), also referred to as MelCAM or MUC18, 13 is a transmembrane glycoprotein that is constitutively expressed in the whole human endothelium, irrespective of its anatomical site or vessel caliber. 14,15 CD146 expression is not restricted to ECs; it has also been observed on several other cell types, including melanoma cells, 13 smooth muscle cells, and follicular dendritic cells. 14 Using optical microscopy, we previously showed that,...
The balance between lesion and regeneration of the endothelium is critical for the maintenance of vessel integrity. Exposure to cardiovascular risk factors (CRF) alters the regulatory functions of the endothelium that progresses from a quiescent state to activation, apoptosis and death. In the last 10 years, identification of circulating endothelial cells (CEC) and endothelial-derived microparticles (EMP) in the circulation has raised considerable interest as non-invasive markers of vascular dysfunction. Indeed, these endothelial-derived biomarkers were associated with most of the CRFs, were indicative of a poor clinical outcome in atherothrombotic disorders and correlated with established parameters of endothelial dysfunction. CEC and EMP also behave as potential pathogenic vectors able to accelerate endothelial dysfunction and promote disease progression. The endothelial response to injury has been enlarged by the discovery of a powerful physiological repair process based on the recruitment of circulating endothelial progenitor cells (EPC) from the bone marrow. Recent studies indicate that reduction of EPC number and function by CRF plays a critical role in the progression of cardiovascular diseases. This EPC-mediated repair to injury response can be integrated into a clinical endothelial phenotype defining the ‘vascular competence’ of each individual. In the future, provided that standardization of available methodologies could be achieved, multimarker strategies combining CEC, EMP and EPC levels as integrative markers of ‘vascular competence’ may offer new perspectives to assess vascular risk and to monitor treatment efficacy.
In the present study we investigated whether endothelial microparticles (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.