The dispersion relation is derived for the coherent waves in fluid or elastic media supporting viscous and thermal effects and containing randomly distributed spherical scatterers. The formula obtained is the generalization of Lloyd and Berry's [Proc. Phys. Soc. London 91, 678-688 (1967)], the latter being limited to fluid host media, and it is the three-dimensional counterpart of that derived by Conoir and Norris [Wave Motion 47, 183-197 (2010)] for cylindrical scatterers in an elastic host medium.
Here we present the verification of shear-mediated contributions to multiple scattering of ultrasound in suspensions. Acoustic spectroscopy was carried out with suspensions of silica of differing particle sizes and concentrations in water to find the attenuation at a broad range of frequencies. As the particle sizes approach the nanoscale, commonly used multiple scattering models fail to match experimental results. We develop a new model, taking into account shear mediated contributions, and find excellent agreement with the attenuation spectra obtained using two types of spectrometer. The results determine that shear-wave phenomena must be considered in ultrasound characterisation of nanofluids at even relatively low concentrations of scatterers that are smaller than one micrometre in diameter.
In a trabecular bone, considered as a nondissipative porous medium, the scattering of an incident wave by cylindrical pores larger than the wavelength is studied. The goal is to know if scattering alone may cause such a high attenuation as that observed in calcaneus. The porous medium is modelized via Biot's theory and the scattering by a single pore is characterized from the definition of a scattering matrix. An approximation of weakly disordered medium is then discussed to estimate the effective attenuation and dispersion as a function of frequency. These effective properties are shown to be different of those measured on calcaneus, due to the neglect of wave conversions during the scattering process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.