The possibility of simultaneously determining seven concerned heavy polycyclic aromatic hydrocarbons (PAHs) of the US-EPA priority pollutant list, in extra virgin olive and sunflower oils was examined using unfolded partial least-squares with residual bilinearization (U-PLS/RBL) and parallel factor analysis (PARAFAC). Both of these methods were applied to fluorescence excitation emission matrices. The compounds studied were benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene and indeno[1,2,3-c,d]-pyrene. The analysis was performed using fluorescence spectroscopy after a microwave assisted liquid-liquid extraction and solid-phase extraction on silica. The U-PLS/RBL algorithm exhibited the best performance for resolving the heavy PAH mixture in the presence of both the highly complex oil matrix and other unpredicted PAHs of the US-EPA list. The obtained limit of detection for the proposed method ranged from 0.07 to 2 μg kg(-1). The predicted U-PLS/RBL concentrations were satisfactorily compared with those obtained using high-performance liquid chromatography with fluorescence detection. A simple analysis with a considerable reduction in time and solvent consumption in comparison with chromatography are the principal advantages of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.