There is evidence that immune-inflammatory, stress of reactive oxygen and nitrogen species (IO&NS) processes play a role in the neurodegenerative processes observed in Parkinson's disease (PD). The aim of the present study was to investigate peripheral IO&NS biomarkers in PD. We included 56 healthy individuals and 56 PD patients divided in two groups: early PD stage and late PD stage. Plasma lipid hydroperoxides (LOOH), malondialdehyde (MDA), nitric oxide metabolites (NOx), sulfhydryl (SH) groups, catalase (CAT) activity, superoxide dismutase (SOD) activity, paraoxonase (PON)1 activity, total radical trapping antioxidant parameter (TRAP) and C-reactive protein (CRP) were measured. PD is characterized by increased LOOH, MDA and SOD activity and lowered CAT activity. A combination of five O&NS biomarkers highly significantly predicts PD with a sensitivity of 94.5% and a specificity of 86.8% (i.e., MDA, SOD activity, TRAP, SH-groups and CAT activity). The single best biomarker of PD is MDA, while LOOH and SOD activity are significantly associated with late PD stage, but not early PD stage. Antiparkinson drugs did not affect O&NS biomarkers, but levodopa+carbidopa significantly increased CRP. It is suggested that MDA may serve as a disease biomarker, while LOOH and SOD activity are associated with late PD stage characteristic. New treatments for PD should not only target dopamine but also lipid peroxidation.
Our study indicates a state of systemic inflammation and oxidative stress in PD patients coupled with alterations in Fe metabolism. Chronic inflammation and oxidative pathways in PD may in part determine changes in iron metabolism. New drug treatments for PD should target inflammatory and oxidative stress pathways and iron metabolism as well.
Aims: This study aims to examine the associations between paraoxonase 1 (PON)1 status and acute ischemic stroke (AIS) and consequent disabilities.
Methods: This study recruited 122 patients with AIS and 40 healthy controls and assessed the Q192R gene variants, arylesterase (AREase) and chloromethyl phenylacetate (CMPAase) activities, and high-density lipoprotein cholesterol (HDL) in baseline conditions. AREase and CMPAase were measured 3 months later. The National Institutes of Health Stroke Scale (NIHSS) and the modified Rankin score (mRS) were assessed at baseline and 3 and 6 months later.
Results: Reduced CMPAase and increased AREase activities are significantly associated with AIS and mRS and NIHSS scores (baseline and 3 and 6 months later). The best predictor of AIS/disabilities was a decrease in the z-unit-based composite zCMPAase-zAREase score. Serum high density lipoprotein cholsterol (HDL) was significantly correlated with CMPAase, but not AREase, activity and a lowered zCMPAase+zHDL score was the second best predictor of AIS/disabilities. Regression analysis showed that 34.7% of the variance in baseline NIHSS was explained by zCMPAase-zAREase and zCMPAase+zHDL composites, HDL, and hypertension. Neural network analysis showed that stroke was differentiated from controls with an area under the ROC curve of 0.975 using both new composite scores, PON1 status, hypertension, dyslipidemia, previous stroke as body mass index. The PON1 Q192R genotype has many significant direct and mediated effects on AIS/disabilities, however, its overall effect was not significant.
Discussion: PON1 status and the CMPAase-HDL complex play key roles in AIS and its disabilities at baseline and 3 and 6 months later.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.