The perception of touch is complex and there has been a lack of ways to describe the full tactile experience quantitatively. Guest et al. (2011) developed a Touch Perception Task (TPT) in order to capture such experiences, and here we used the TPT to examine differences in sensory and emotional aspects of touch at different skin sites. We compared touch on three skin sites: the hairy arm and cheek, and the glabrous palm. The hairy skin contains C-tactile (CT) afferents, which play a role in affective touch, whereas glabrous skin does not contain CT afferents and is involved in more discriminative touch. In healthy volunteers, three different materials (soft brush, sandpaper, fur) were stroked across these skin sites during self-touch or experimenter-applied touch. After each stimulus, participants rated the tactile experience using descriptors in the TPT. Sensory and emotional descriptors were analyzed using factor analyses. Five sensory factors were found: Texture, Pile, Moisture, Heat/Sharp and Cold/Slip, and three emotional factors: Positive Affect, Arousal, and Negative Affect. Significant differences were found in the use of descriptors in touch to hairy vs. glabrous skin: this was most evident in touch on forearm skin, which produced higher emotional content. The touch from another was also judged as more emotionally positive then self-touch, and participants readily discriminated between the materials on all factors. The TPT successfully probed sensory and emotional percepts of the touch experience, which aided in identifying skin where emotional touch was more pertinent. It also highlights the potentially important role for CTs in the affective processing of inter-personal touch, in combination with higher-order influences, such as through cultural belonging and previous experiences.
Active, self-touch and the passive touch from an external source engage comparable afferent mechanoreceptors on the touched skin site. However, touch directed to glabrous skin compared to hairy skin will activate different types of afferent mechanoreceptors. Despite perceptual similarities between touch to different body sites, it is likely that the touch information is processed differently. In the present study, we used functional magnetic resonance imaging (fMRI) to elucidate the cortical differences in the neural signal of touch representations during active, self-touch and passive touch from another, to both glabrous (palm) and hairy (arm) skin, where a soft brush was used as the stimulus. There were two active touch conditions, where the participant used the brush in their right hand to stroke either their left palm or arm. There were two similar passive, touch conditions where the experimenter used an identical brush to stroke the same palm and arm areas on the participant. Touch on the left palm elicited a large, significant, positive blood-oxygenation level dependence (BOLD) signal in right sensorimotor areas. Less extensive activity was found for touch to the arm. Separate somatotopical palm and arm representations were found in Brodmann area (BA) 3 of the right primary somatosensory cortex (SI) and in both these areas, active stroking gave significantly higher signals than passive stroking. Active, self-touch elicited a positive BOLD signal in a network of sensorimotor cortical areas in the left hemisphere, compared to the resting baseline. In contrast, during passive touch, a significant negative BOLD signal was found in the left SI. Thus, each of the four conditions had a unique cortical signature despite similarities in afferent signaling or evoked perception. It is hypothesized that attentional mechanisms play a role in the modulation of the touch signal in the right SI, accounting for the differences found between active and passive touch.
People rely on speech for communication, both in a personal and professional context, and often under different conditions of physical, cognitive and/or emotional load. Since vocalization is entirely integrated within both our central (CNS) and autonomic nervous system (ANS), a mounting number of studies have examined the relationship between voice output and the impact of stress. In the current paper, we will outline the different stages of voice output, i.e., breathing, phonation and resonance in relation to a neurovisceral integrated perspective on stress and human performance. In reviewing the function of these three stages of voice output, we will give an overview of the voice parameters encountered in studies on voice stress analysis (VSA) and review the impact of the different types of physiological, cognitive and/or emotional load. In the section “Discussion,” with regard to physical load, a competition for ventilation processes required to speak and those to meet metabolic demand of exercised muscles is described. With regard to cognitive and emotional load, we will present the “Model for Voice and Effort” (MoVE) that comprises the integration of ongoing top-down and bottom-up activity under different types of load and combined patterns of voice output. In the MoVE, it is proposed that the fundamental frequency (F0) values as well as jitter give insight in bottom-up/arousal activity and the effort a subject is capable to generate but that its range and variance are related to ongoing top-down processes and the amount of control a subject can maintain. Within the MoVE, a key-role is given to the anterior cingulate cortex (ACC) which is known to be involved in both the equilibration between bottom-up arousal and top-down regulation and vocal activity. Moreover, the connectivity between the ACC and the nervus vagus (NV) is underlined as an indication of the importance of respiration. Since respiration is the driving force of both stress and voice production, it is hypothesized to be the missing-link in our understanding of the underlying mechanisms of the dynamic between speech and stress.
The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.