Dehydrins are characterized by the consensus KIKEKLPG amino acid sequence found near the carboxy terminus, and usually repeated from one to many times within the protein. A synthetic peptide containing this consensus sequence was used to produce specific antibodies that recognize dehydrins in a wide range of plants. This range covered two families of monocots, viz. Gramineae (Hordeum vulgare L., Triticum aestivum L., Zea mays L., Oryza sativa L.) and Liliaceae (Allium sativa L.), and five families of dicots, Malvaceae (Gossypium hirsutum L.), Solanaceae (Lycopersicon esculentum L.), Brassicaceae (Raphanus sativus L.), Fabaceae (Vigna unguiculata L.), and Cucurbitaceae (Cucumis sativus L.). Two families of gymnosperms, Pinaceae (Pinus edulis Engelm.) and Ginkgoaceae (Ginkgo biloba L.), were also included. For several plants in which dehydrin cDNA and genomic clones have previously been characterized, it now appears that the dehydrin family of proteins is larger, and the regulation of dehydrin expression much more complex, than earlier studies have shown.
We have derived the genomic nucleotide sequence of an emerging virus, the Sugarcane yellow leaf virus (ScYLV), and shown that it produces one to two subgenomic RNAs. The family Luteoviridae currently includes the Luteovirus, Polerovirus, and Enamovirus genera. With the new ScYLV nucleotide sequence and existing Luteoviridae sequence information, we have utilized new phylogenetic and evolutionary methodologies to identify homologous regions of Luteoviridae genomes, which have statistically significant altered nucleotide substitution ratios and have produced a reconstructed phylogeny of the Luteoviridae. The data indicate that Pea enation mosaic virus-1 (PEMV-1), Soybean dwarf virus (SbDV), and ScYLV exhibit spatial phylogenetic variation (SPV) consistent with recombination events that have occurred between poleroviral and luteoviral ancestors, after the divergence of these two progenitor groups. The reconstructed phylogeny confirms a contention that a continuum in the derived sequence evolution of the Luteoviridae has been established by intrafamilial as well as extrafamilial RNA recombination and expands the database of recombinant Luteoviridae genomes that are currently needed to resolve better defined means for generic discrimination in the Luteoviridae (D'Arcy, C. J. and Mayo, M. 1997. Arch. Virol. 142, 1285-1287). The analyses of the nucleotide substitution ratios from a nucleotide alignment of Luteoviridae genomes substantiates the hypothesis that hot spots for RNA recombination in this virus family are associated with the known sites for the transcription of subgenomic RNAs (Miller et al. 1995. Crit. Rev. Plant Sci. 14, 179-211), and provides new information that might be utilized to better design more effective means to generate transgene-mediated host resistance.
The vaccinia virus E3L gene product, pE3, is a dsRNA binding protein that prevents activation of the interferon-induced, dsRNA-activated protein kinase, PKR. Activation of PKR, which results in phosphorylation of the translation initiation factor, eIF2alpha, leads to the inhibition of protein synthesis, a process involved in defense against virus infection. The E3L gene product has a conserved dsRNA binding domain (DRBD) in its carboxyl-terminal region and has been shown to function in vitro by sequestration of dsRNA. We have utilized in vitro binding assays and the yeast two-hybrid system to demonstrate direct interactions of pE3 with PKR. By these methods, we demonstrate that pE3 interacts with two distinct regions in PKR, the amino-terminal (amino acids 1-99) located in the regulatory domain and the carboxyl-terminal (amino acids 367-523) located in the catalytic domain. The amino-terminal region of PKR that interacts with pE3 contains a conserved DRBD, suggesting that PKR can form nonfunctional heterodimers with pE3, analogous to those seen with other dsRNA binding proteins. Interaction of pE3 with the amino-terminal region of PKR is enhanced by dsRNA. In contrast, dsRNA reduces the interaction of pE3 with the carboxyl-terminal region of PKR. Competition experiments demonstrate that the carboxyl-terminal region of PKR, to which pE3 binds, overlaps the region with which eIF2alpha and the pseudosubstrate pK3 interact, suggesting that pE3 may also prevent PKR activation by masking the substrate binding domain. Like pE3, the amino-terminal region of PKR also interacts with the carboxyl-terminal domain of PKR. These interactions increase our understanding of the mechanisms by which pE3 downregulates PKR. In addition, the PKR-PKR interactions observed leads us to suggest a novel autoregulatory mechanism for activation of PKR in which dsRNA binding to the DRBD(s) induces a conformational change that results in release of the amino terminal region from the substrate binding domain, allowing access to eIF2alpha and its subsequent phosphorylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.