BackgroundHigh density genetic maps of plants have, nearly without exception, made use of marker datasets containing missing or questionable genotype calls derived from a variety of genic and non-genic or anonymous markers, and been presented as a single linear order of genetic loci for each linkage group. The consequences of missing or erroneous data include falsely separated markers, expansion of cM distances and incorrect marker order. These imperfections are amplified in consensus maps and problematic when fine resolution is critical including comparative genome analyses and map-based cloning. Here we provide a new paradigm, a high-density consensus genetic map of barley based only on complete and error-free datasets and genic markers, represented accurately by graphs and approximately by a best-fit linear order, and supported by a readily available SNP genotyping resource.ResultsApproximately 22,000 SNPs were identified from barley ESTs and sequenced amplicons; 4,596 of them were tested for performance in three pilot phase Illumina GoldenGate assays. Data from three barley doubled haploid mapping populations supported the production of an initial consensus map. Over 200 germplasm selections, principally European and US breeding material, were used to estimate minor allele frequency (MAF) for each SNP. We selected 3,072 of these tested SNPs based on technical performance, map location, MAF and biological interest to fill two 1536-SNP "production" assays (BOPA1 and BOPA2), which were made available to the barley genetics community. Data were added using BOPA1 from a fourth mapping population to yield a consensus map containing 2,943 SNP loci in 975 marker bins covering a genetic distance of 1099 cM.ConclusionThe unprecedented density of genic markers and marker bins enabled a high resolution comparison of the genomes of barley and rice. Low recombination in pericentric regions is evident from bins containing many more than the average number of markers, meaning that a large number of genes are recombinationally locked into the genetic centromeric regions of several barley chromosomes. Examination of US breeding germplasm illustrated the usefulness of BOPA1 and BOPA2 in that they provide excellent marker density and sensitivity for detection of minor alleles in this genetically narrow material.
Because of the huge size of the common wheat (Triticum aestivum L., 2n ϭ 6x ϭ 42, AABBDD) genome of 17,300 Mb, sequencing and mapping of the expressed portion is a logical first step for gene discovery. Here we report mapping of 7104 expressed sequence tag (EST) unigenes by Southern hybridization into a chromosome bin map using a set of wheat aneuploids and deletion stocks. Each EST detected a mean of 4.8 restriction fragments and 2.8 loci. More loci were mapped in the B genome (5774) than in the A (5173) or D (5146) genomes. The EST density was significantly higher for the D genome than for the A or B. In general, EST density increased relative to the physical distance from the centromere. The majority of EST-dense regions are in the distal parts of chromosomes. Most of the agronomically important genes are located in EST-dense regions. The chromosome bin map of ESTs is a unique resource for SNP analysis, comparative mapping, structural and functional analysis, and polyploid evolution, as well as providing a framework for constructing a sequence-ready, BAC-contig map of the wheat genome.
Dehydrins (DHNs; late embryogenesis abundant D-11) are a family of plant proteins induced in response to abiotic stresses such as drought, low temperature, and salinity or during the late stages of embryogenesis. Spectral and thermal properties of these proteins in purified form suggest that they are "intrinsically unstructured." However, DHNs contain at least one copy of a consensus 15-amino acid sequence, the "K segment," which resembles a class A2 amphipathic ␣-helical, lipid-binding domain found in other proteins such as apolipoproteins and ␣-synuclein. The presence of the K segment raises the question of whether DHNs bind lipids, bilayers, or phospholipid vesicles. Here, we show that maize (Zea mays) DHN DHN1 can bind to lipid vesicles that contain acidic phospholipids. We also observe that DHN1 binds more favorably to vesicles of smaller diameter than to larger vesicles, and that the association of DHN1 with vesicles results in an apparent increase of ␣-helicity of the protein. Therefore, DHNs, and presumably somewhat similar plant stress proteins in the late embryogenesis abundant and cold-regulated classes may undergo function-related conformational changes at the water/ membrane interface, perhaps related to the stabilization of vesicles or other endomembrane structures under stress conditions.When plant cells are under environmental stresses such as drought or low temperature, diverse physiological and molecular responses can occur, including alteration of gene expression, changes in metabolism, osmotic adjustment, induction of degradation and repair systems, and elevated expression of late embryogenesis abundant (LEA), chaperone, and mRNA-binding proteins (Ingram and Bartels, 1996; Thomashow, 1999).DHNs (LEA D-11 family) are among the most prevalent plant proteins induced during the late stage of embryogenesis or under drought, low temperature, freezing, salinity, or abscisic acid application (Close, 1996). They are characterized by diverse combinations of typical domains (Fig. 1A). The K segment is a Lys-rich 15-amino acid consensus sequence (EKKGIMDKIKEKPLG) that is highly conserved in all plants (Close, 1997). The K segment resembles a lipid-binding class A2 amphipathic ␣-helical segment found in apolipoproteins and ␣-synucleins ( Fig. 1B; Close, 1997; Davidson et al., 1998). The S-segment is a phosphorylatable Ser-rich tract. The Y segment is an N-terminal conserved sequence. The -segment is rich in polar amino acids and either Gly or a combination of Pro and Ala. Each DHN can be subclassified on the basis of these domains (Close, 1997).Immunolocalization studies of maize scutellar parenchyma cells have shown that DHN in the cytosol is associated with membrane-rich areas surrounding lipid and protein bodies (Asghar et al., 1994; EgertonWarburton et al., 1997), and in wheat (Triticum aestivum), an acidic DHN accumulates near the plasma membrane under cold stress (Danyluk et al., 1998). Despite this and other evidence of membrane binding in vivo, DHNs purified from these and numerous other sources...
Dehydrins are characterized by the consensus KIKEKLPG amino acid sequence found near the carboxy terminus, and usually repeated from one to many times within the protein. A synthetic peptide containing this consensus sequence was used to produce specific antibodies that recognize dehydrins in a wide range of plants. This range covered two families of monocots, viz. Gramineae (Hordeum vulgare L., Triticum aestivum L., Zea mays L., Oryza sativa L.) and Liliaceae (Allium sativa L.), and five families of dicots, Malvaceae (Gossypium hirsutum L.), Solanaceae (Lycopersicon esculentum L.), Brassicaceae (Raphanus sativus L.), Fabaceae (Vigna unguiculata L.), and Cucurbitaceae (Cucumis sativus L.). Two families of gymnosperms, Pinaceae (Pinus edulis Engelm.) and Ginkgoaceae (Ginkgo biloba L.), were also included. For several plants in which dehydrin cDNA and genomic clones have previously been characterized, it now appears that the dehydrin family of proteins is larger, and the regulation of dehydrin expression much more complex, than earlier studies have shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.