The ATP-sensitive potassium channel (Katp) openers cromakalim (1), pinacidil (2), aprikalim (3), and diazoxide (4) are potent antihypertensive agents acting via peripheral H Diazoxide (4) vasodilation.1 The original excitement about the discovery
The ATP-sensitive potassium channel (KATP) openers are of considerable interest as myocardial protecting agents. However, there exists a narrow window of safety for the use of first-generation compounds as antiischemic agents due to their powerful peripheral vasodilating effects, which can result in underperfusion of the area already at risk. We have recently disclosed the discovery of benzopyranylcyanoguanidine type KATP openers (BMS-180448) which are more selective for the ischemic myocardium compared to the first-generation compounds. This publication deals with structure-activity relationships for the antiischemic activity of the lead compound 8. The presence of an electron-withdrawing group at C6, an sp3 center at C4, and a gem-dimethyl group at C2 appears to be essential for antiischemic activity. Cyanoguanidine can be replaced with a urea moiety. The results reported here support the hypothesis that distinct structure-activity relationships exist for antiischemic and vasorelaxant activities of compounds related to 8 and cromakalim. The trifluoromethyl analog 10 is 550-fold more selective in vitro for the ischemic myocardium compared to the first-generation agent cromakalim. The reasons for the selectivity of these compounds for the ischemic myocardium are not clear at the present time. They may be related to the existence of receptor subtypes in smooth muscle and the myocardium.
This paper describes our studies aimed at the discovery of structurally distinct analogs of the cardioprotective KATP opener BMS-180448 (2) with improved selectivity for the ischemic myocardium. The starting compound 6, derived from the indole analog 4. showed good cardioprotective potency and excellent selectivity compared to 2 and the first-generation KATP opener cromakalim (1). The structure-activity studies indicate that increasing the size of the alkyl ester leads to diminished potency as does its replacement with a variety of other groups (nitrile, methyl sulfone). Replacement of the ethyl ester of 6 with an imidazole gave the best compound 3 (BMS-191095) of this series which maintains the potency and selectivity of its predecessor 6. The results described in this publication further support that there is no correlation between vasorelaxant and cardioprotective potencies of KATP openers. Compound 3 is over 20- and 4000-fold more selective for the ischemic myocardium than 2 and cromakalim (1), respectively. The selectivity for the ischemic myocardium is achieved by reduction of vasorelaxant potency rather than enhancement in antiischemic potency. As for cromakalim (1) and 2, the cardioprotective effects of compound 3 are inhibited by cotreatment with the KATP blocker glyburide, indicating that the KATP opening is involved in its mechanism of cardioprotection. With its good oral bioavailability (47%) and plasma elimination half-life (3 h) in rats, compound 3 offers an excellent candidate to investigate the role of residual vasorelaxant potency of 2 toward its cardioprotective activity in vivo.
In this paper we show that 4-aryl-CH2-imidazole-substituted benzopyran compounds with 3S,4R-stereochemistry are cardioprotective by inhibiting the F1F0 mitochondrial ATP hydrolase. Compounds (e.g., 13) with 3R,4S-stereochemistry act as mitochondrial KATP openers. This resulted from an inversion of stereochemistry for the F1F0 mitochondrial ATP hydrolase vs mitochondrial KATP. Structure-activity relationships for the inhibition of mitochondrial ATP hydrolase are also delineated. It is not clear how 13 (3R,4S) can selectively inhibit the hydrolytic activity of the F1F0 mitochondrial enzyme without interfering with the synthase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.