This paper investigates the asset liability management problem for an ordinary insurance system incorporating the standard concept of proportional reinsurance coverage in a stochastic interest rate and stochastic volatility framework. The goal of the insurer is to maximize the expectation of the constant relative risk aversion (CRRA) of the terminal value of the wealth, while the goal of the reinsurer is to maximize the expected exponential utility (CARA) of the terminal wealth held by the reinsurer. We assume that the financial market consists of risk-free assets and risky assets, and both the insurer and the reinsurer invest on one risk-free asset and one risky asset. By using the stochastic optimal control method, analytical expressions are derived for the optimal reinsurance control strategy and the optimal investment strategies for both the insurer and the reinsurer in terms of the solutions to the underlying Hamilton-Jacobi-Bellman equations and stochastic differential equations for the wealths. Subsequently, a semi-analytical method has been developed to solve the Hamilton-Jacobi-Bellman equation. Finally, we present numerical examples to illustrate the theoretical results obtained in this paper, followed by sensitivity tests to investigate the impact of reinsurance, risk aversion, and the key parameters on the optimal strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.