Silver nanoparticles (AgNPs) are metal structures at the nanoscale. AgNPs have
exhibited antimicrobial activities against fungi and bacteria; however synthesis of
AgNPs can generate toxic waste during the reaction process. Accordingly, new routes
using non-toxic compounds have been researched. The proposal of the present study was
to synthesize AgNPs using ribose as a reducing agent and sodium dodecyl sulfate (SDS)
as a stabilizer. The antifungal activity of these particles against C.
albicans and C. tropicalis was also evaluated. Stable
nanoparticles 12.5 ± 4.9 nm (mean ± SD) in size were obtained, which showed high
activity against Candida spp. and could represent an alternative for
fungal infection treatment.
Airbone fungi are considered important causes of allergic rhinitis and allergic asthma. The knowledge of these fungi in a city or region is important for the ecological diagnosis and specific treatment of allergic manifestations induced by inhalation of fungal allergens. The airborne fungi of Fortaleza, State of Ceará, Brazil, were studied during a one year period. Five hundred and twenty Petri dishes with Sabouraud dextrose agar medium were exposed at ten different locations in the city. The dishes exposed yielded one thousand and five hundred and twenty one colonies of twenty four genera. The most predominants were: Aspergillus (44.7%), Penicillium (13.3%), Curvularia (9.8%), Cladosporium (6.8%), Mycelia sterilia (6.0%), Fusarium (3.5%), Rhizopus (3.1%), Drechslera (2.6%), Alternaria (2.4%) and Absidia (2.2%). The results shown that Aspergillus, Penicillium, Mycelia sterilia, Fusarium and Alternaria were found during all months in the year. Absidia was more frequent during the dry season. Anemophilous fungi and the high concentration of spores in the air are important because may result in an increased number of people with allergic respiratory disease.
Silver nanoparticles (AgNPs) have several technological applications and may be synthetized by chemical, physical and biological methods. Biosynthesis using fungi has a wide enzymatic range and it is easy to handle. However, there are few reports of yeasts with biosynthetic ability to produce stable AgNPs. The purpose of this study was to isolate and identify soil yeasts (Rhodotorula glutinis and Rhodotorula mucilaginosa). After this step, the yeasts were used to obtain AgNPs with catalytic and antifungal activity evaluation. Silver Nanoparticles were characterized by UV-Vis, DLS, FTIR, XRD, EDX, SEM, TEM and AFM. The AgNPs produced by R. glutinis and R. mucilaginosa have 15.45 ± 7.94 nm and 13.70 ± 8.21 nm (average ± SD), respectively, when analyzed by TEM. AgNPs showed high catalytic capacity in the degradation of 4-nitrophenol and methylene blue. In addition, AgNPs showed high antifungal activity against Candida parapsilosis and increase the activity of fluconazole (42.2% for R. glutinis and 29.7% for R. mucilaginosa), while the cytotoxicity of AgNPs was only observed at high concentrations. Finally, two yeasts with the ability to produce AgNPs were described and these particles showed multifunctionality and can represent a technological alternative in many different areas with potential applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.