Naturalistic driving can generate huge datasets with great potential for research. However, to analyze the collected data in naturalistic driving trials is quite complex and difficult, especially if we consider that these studies are commonly conducted by research groups with somewhat limited resources. It is quite common that these studies implement strategies for thinning and/or reducing the data volumes that have been initially collected. Thus, and unfortunately, the great potential of these datasets is significantly constrained to specific situations, events, and contexts. For this, to implement appropriate strategies for the visualization of these data is becoming increasingly necessary, at any scale. Mapping naturalistic driving data with Geographic Information Systems (GIS) allows for a deeper understanding of our driving behavior, achieving a smarter and broader perspective of the whole datasets. GIS mapping allows for many of the existing drawbacks of the traditional methodologies for the analysis of naturalistic driving data to be overcome. In this article, we analyze which are the main assets related to GIS mapping of such data. These assets are dominated by the powerful interface graphics and the great operational capacity of GIS software.Undoubtedly, one of the most interesting topics related to traffic and transportation issues is road safety [16]. This is highly complex and goes beyond the number of deaths and injuries in crashes within a certain period. Road fatalities have a huge impact, not only in terms of the number of casualties, but also in terms of the costs related to caring for the injured people, the disruption of traffic flows just after accidents, and so forth [17]. For this reason, it becomes increasingly important to deploy prevention policies to manage infrastructures and road flows as well as to provide a quick and efficient response in emergencies [18].Most studies analyze road safety by considering the different elements that are involved, such as the vehicle, driver, road, and infrastructure. However, they generally do it by isolating one of these elements separately or assessing the interaction of two elements at most. Some recent studies suggest the growing need for integrating the maximum number of elements that can affect driving performance to ensure a bigger picture of the whole driving scenario. Thus, more light is shed on why a certain incident happens and under what circumstances [19].In the last few years, the naturalistic driving method has gained more relevance. This research method aims to characterize the driving behavior of people in real-world situations. In order to do that, the different elements and factors involved in the driving performance are recorded using a large array of sensors and video cameras inconspicuously installed in the vehicle. This equipment allows data related to the driving performance to be collected at high temporal rates. These kinds of data are collected using massive and blind strategies. They are massive because their aim is to collec...
This study aimed to investigate the relationship between the characteristics of the areas of influence of bus stops and the decrease in ridership during COVID-19 lockdowns and subsequent initial reopening processes. A novel GIS methodology was developed to determine these characteristics from a large amount of data with high spatial detail and accurately assign them to individual bus stops. After processing the data, several multiple linear regression models were developed to determine the variables related to different activities and changes in mobility during lockdown that may explain the variation in demand owing to the COVID-19 pandemic. The characteristics related to population and land use were also studied. The proposed methodology can be used to improve transit planning during exceptional situations, by strengthening public transport in areas with a predictably higher transit demand, instead of uniformly decreasing the availability of public transport services, promoting sustainable mobility. The efficiency of the proposed methodology was shown by performing a case study that analysed the variation in bus demand in A Coruña, Spain. The areas with the highest sustained demand were those with low inhabitant incomes, a high population density, and significant proportions of land use dedicated to hospitals, offices, or supermarkets.
This article presents a novel installation for the development of hybrid physical-numerical flood models in an augmented reality environment. This installation extends the concept introduced by the well-known Augmented Reality-SandBox (AR-Sandbox) module, which presents a more educational, and less research-based and professional application. It consists of a physical scale topography built in a sandbox into which other elements (such as buildings, roads or dikes) can be incorporated. A scanner generates, in real time, a Digital Terrain Model (DTM) from the sandbox topography, which serves as a basis for the simulation of overland flow using professional hydraulic software (Iber+). The hydraulic and hydrological parameters (surface roughness, inlet discharges, boundary conditions) are entered with a simple Graphical User Interface (GUI) developed specifically for this project, as indeed was the entire system that allows the visualization of the simulation results. This allows us to obtain quantitative results of flood extension and magnitude, which are represented directly over the physical topography, yielding a realistic visual effect. This installation is conceived for both educational and professional uses. An example of its use is presented, through which its accuracy can be appreciated, and which also illustrates its potential.
Light detection and ranging (LiDAR) scanning in urban environments leads to accurate and dense three-dimensional point clouds where the different elements in the scene can be precisely characterized. In this paper, two LiDAR-based algorithms that complement each other are proposed. The first one is a novel profiling method robust to noise and obstacles. It accurately characterizes the curvature, the slope, the height of the sidewalks, obstacles, and defects such as potholes. It was effective for 48 of 49 detected zebra crossings, even in the presence of pedestrians or vehicles in the crossing zone. The second one is a detailed quantitative summary of the state of the zebra crossing. It contains information about the location, the geometry, and the road marking. Coarse grain statistics are more prone to obstacle-related errors and are only fully reliable for 18 zebra crossings free from significant obstacles. However, all the anomalous statistics can be analyzed by looking at the associated profiles. The results can help in the maintenance of urban roads. More specifically, they can be used to improve the quality and safety of pedestrian routes.
The point clouds acquired with a mobile LiDAR scanner (MLS) have high density and accuracy, which allows one to identify different elements of the road in them, as can be found in many scientific references, especially in the last decade. This study presents a methodology to characterize the urban space available for walking, by segmenting point clouds from data acquired with MLS and automatically generating impedance surfaces to be used in pedestrian accessibility studies. Common problems in the automatic segmentation of the LiDAR point cloud were corrected, achieving a very accurate segmentation of the points belonging to the ground. In addition, problems caused by occlusions caused mainly by parked vehicles and that prevent the availability of LiDAR points in spaces normally intended for pedestrian circulation, such as sidewalks, were solved in the proposed methodology. The innovation of this method lies, therefore, in the high definition of the generated 3D model of the pedestrian space to model pedestrian mobility, which allowed us to apply it in the search for shorter and safer pedestrian paths between the homes and schools of students in urban areas within the Big-Geomove project. Both the developed algorithms and the LiDAR data used are freely licensed for their use in further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.