Scaffolds are models designed to aid the interaction between cells and extracellular bone matrix, providing structural support for newly formed bone tissue. In this work, wollastonite with β‐TCP porous ceramic scaffolds was developed by the polymer sponge replication. Their microstructure, cell viability and bioactivity were tested. in vivo was performed to evaluate the use of a calcium silicate‐based implant in the repair of rabbit tibias. Holes were made in the both proximal and distal tibial metaphysis of each animal and filled with calcium silicate‐based implant, and in the left tibia, no implant were used, serving as control group. Animals underwent euthanasia after 30 and 60 days of study. The animals were submitted to clinical‐radiographic evaluations and their histology was analyzed by optical and scanning electron microscope. The studied calcium silicate implant provided biocompatibility and promoted bone formation, stimulating the process of bone repair in rabbits, features observed by gradual radiopacity shown in the radiographic evaluations.
The aim of this study was to evaluate the trochlear bone and cartilaginous regeneration of rabbits using the association of PRP, chitosan, and hydroxyapatite. Hole was made in rabbit troches, one hole in each animal remained empty (group C), and one was filled by a combination of PRP, chitosan, and hydroxyapatite (group T). Clinical-orthopedic, radiographic, and histomorphometric evaluations were performed. Clinical-orthopedic evaluation showed lameness of two members of the T group and one member of group C. The radiographic evaluation showed that the T group showed absence of subchondral bone reaction (33%). The presence of moderate subchondral bone reaction was more frequently reported in group C with 67%. Microscopic evaluation revealed a presence of tissue neoformation, composed of connective tissue. Microscopic findings were similar in both groups, with a difference in the amount of neoformed tissue being perceptible, which was confirmed after the morphometric analysis, which revealed a significant difference in the quantity of newly formed tissue at the bone/cartilage/implant interface. The composite base of the association of chitosan, hydroxyapatite, and platelet-rich plasma favored bone and cartilage healing.
This work investigates peripheral nerve regeneration using membranes consisting of pure chitosan (CHI), which was further blended with nanofibrillated cellulose, with citric acid as crosslinker, with posterior addition of polyvinyl alcohol, with subsequent freeze thawing. Nanocellulose improves the mechanical and thermal resistance, as well as flexibility of the film, which is ideal for the surgical procedure. The hydrogel presented a slow rate of swelling, which is adequate for cell and drug delivery. A series of in vitro tests revealed to be non-toxic for neuronal Schwann cell from the peripheral nervous system of Rattus norvegicus, while there was a slight increase in toxicity if crosslink is performed—freeze-thaw. The in vivo results, using rabbits with a 5 mm gap nerve defect, revealed that even though pure CHI was able to regenerate the nerve, it did not present functional recovery with only the deep pain attribute being regenerated. When autologous implant was used jointly with the biomaterial membrane, as a covering agent, it revealed a functional recovery within 15 d when cellulose and the hydrogel were introduced, which was attributed to the film charge interaction that may help influence the neuronal axons growth into correct locations. Thus, indicating that this system presents ideal regeneration as nerve conduits.
Revisão: Os Autores O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade são de responsabilidade exclusiva dos autores. Permitido o download da obra e o compartilhamento desde que sejam atribuídos créditos aos autores, mas sem a possibilidade de alterá-la de nenhuma forma ou utilizá-la para fins comerciais.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.