This paper presents a hybrid adaptive algorithm for the compression of surface electromyographic (S-EMG) signals recorded during isometric and/or isotonic contractions. This technique is useful for minimizing data storage and transmission requirements for applications where multiple channels with high bandwidth data are digitized, such as telemedicine applications. The compression algorithm proposed in this work uses a discrete wavelet transform for spectral decomposition and an intelligent dynamic bit allocation scheme implemented by an approach using the Kohonen layer, which improves the bit allocation for sections of the S-EMG with different characteristics. Finally, data and overhead information are packed by entropy coding. The results for the compression of isometric EMG signals showed that this algorithm has a better performance than standard wavelet compression algorithms presented in the literature (presenting a decrease of at least 5% in per cent residual difference (PRD) for the same compression ratio), and a performance that is comparable with the performance of algorithms based on an embedded zero-tree wavelet. For isotonic EMG signals, its performance is better than the performance of the algorithms based on embedded zero-tree wavelets (presenting a decrease in PRD of about 3.6% for the same compression ratios, in the useful compression range).
This work presents a study on the influence of the aqueous environment on the surface EMG (sEMG) signal recorded in bipolar montage from the abductor pollicis brevis muscle, when only the forearm is immersed in water. Ten men, 30.1+/-4.0 (mean +/- SD) years old, performed ten 2-s 40% MVC isometric contractions of the abductor pollicis brevis muscle in two controlled environments (air and water, at a temperature of 32 degrees C). They were always equipped with electrodes protected with a waterproof adhesive tape. No significant variations (paired Wilcoxon test) due to the environments were observed in the median frequency of the power spectrum (MDF) and in the root mean square (RMS) value of the sEMG signal. These results allow us to assess the methodological criteria to properly record sEMG signals in water and provide the basis to explain different findings obtained by other authors.
BackgroundSurface electromyographic (S-EMG) signal processing has been emerging in the past few years due to its non-invasive assessment of muscle function and structure and because of the fast growing rate of digital technology which brings about new solutions and applications. Factors such as sampling rate, quantization word length, number of channels and experiment duration can lead to a potentially large volume of data. Efficient transmission and/or storage of S-EMG signals are actually a research issue. That is the aim of this work.MethodsThis paper presents an algorithm for the data compression of surface electromyographic (S-EMG) signals recorded during isometric contractions protocol and during dynamic experimental protocols such as the cycling activity. The proposed algorithm is based on discrete wavelet transform to proceed spectral decomposition and de-correlation, on a dynamic bit allocation procedure to code the wavelets transformed coefficients, and on an entropy coding to minimize the remaining redundancy and to pack all data. The bit allocation scheme is based on mathematical decreasing spectral shape models, which indicates a shorter digital word length to code high frequency wavelets transformed coefficients. Four bit allocation spectral shape methods were implemented and compared: decreasing exponential spectral shape, decreasing linear spectral shape, decreasing square-root spectral shape and rotated hyperbolic tangent spectral shape.ResultsThe proposed method is demonstrated and evaluated for an isometric protocol and for a dynamic protocol using a real S-EMG signal data bank. Objective performance evaluations metrics are presented. In addition, comparisons with other encoders proposed in scientific literature are shown.ConclusionsThe decreasing bit allocation shape applied to the quantized wavelet coefficients combined with arithmetic coding results is an efficient procedure. The performance comparisons of the proposed S-EMG data compression algorithm with the established techniques found in scientific literature have shown promising results.
We present a new preprocessing technique for two-dimensional compression of surface electromyographic (S-EMG) signals, based on correlation sorting. We show that the JPEG2000 coding system (originally designed for compression of still images) and the H.264/AVC encoder (video compression algorithm operating in intraframe mode) can be used for compression of S-EMG signals. We compare the performance of these two off-the-shelf image compression algorithms for S-EMG compression, with and without the proposed preprocessing step. Compression of both isotonic and isometric contraction S-EMG signals is evaluated. The proposed methods were compared with other S-EMG compression algorithms from the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.