This study investigated the effects of 5 and 15°C cold-water immersion on recovery from exercise resulting in exercise-induced muscle damage. 42 college-aged men performed 5×20 drop-jumps and were randomly allocated into one of 3 groups: (1) 5°C; (2) 15°C; or (3) control. After exercise, individuals from the cold-water immersion groups had their lower limbs immerged in iced water for 20 min. Isometric knee extensor torque, countermovement jump, muscle soreness, and creatine kinase were measured before, immediately after, 24, 48, 72, 96 and 168 h post-exercise. There was no between-group difference in isometric strength recovery (p=0.73). However, countermovement jump recovered quicker in cold-water immersion groups compared to control group (p<0.05). Countermovement jump returned to baseline after 72 h in 15°C, 5°C group recovered after 96 h and control did not recovered at any time point measured. Also, creatine kinase returned to baseline at 72 h and remained stable for all remaining measurements for 15°C group, whereas remained elevated past 168 h in both 5°C and control groups. There was a trend toward lower muscle soreness (p=0.06) in 15°C group compared to control at 24 h post-exercise. The result suggests that cold-water immersion promote recovery of stretch-shortening cycle performance, but not influence the recovery of maximal contractile force. Immersion at warmer temperature may be more effective than colder temperatures promoting recovery from strenuous exercise.
This paper presents a hybrid adaptive algorithm for the compression of surface electromyographic (S-EMG) signals recorded during isometric and/or isotonic contractions. This technique is useful for minimizing data storage and transmission requirements for applications where multiple channels with high bandwidth data are digitized, such as telemedicine applications. The compression algorithm proposed in this work uses a discrete wavelet transform for spectral decomposition and an intelligent dynamic bit allocation scheme implemented by an approach using the Kohonen layer, which improves the bit allocation for sections of the S-EMG with different characteristics. Finally, data and overhead information are packed by entropy coding. The results for the compression of isometric EMG signals showed that this algorithm has a better performance than standard wavelet compression algorithms presented in the literature (presenting a decrease of at least 5% in per cent residual difference (PRD) for the same compression ratio), and a performance that is comparable with the performance of algorithms based on an embedded zero-tree wavelet. For isotonic EMG signals, its performance is better than the performance of the algorithms based on embedded zero-tree wavelets (presenting a decrease in PRD of about 3.6% for the same compression ratios, in the useful compression range).
With the purpose of manipulating training stimuli, several techniques have been employed to resistance training. Two of the most popular techniques are the pre-exhaustion (PRE) and priority system (PS). PRE involves exercising the same muscle or muscle group to the point of muscular failure using a single-joint exercise immediately before a multi-joint exercise (e.g., peck-deck followed by chest press). On the other hand, it is often recommended that the complex exercises should be performed first in a training session (i.e., chest press before peck-deck), a technique known as PS. The purpose of the present study was to compare upper-body muscle activation, total repetitions (TR), and total work (TW) during PRE and PS. Thirteen men (age 25.08 +/- 2.58 years) with recreational weight-training experience performed 1 set of PRE and 1 set of PS in a balanced crossover design. The exercises were performed at the load obtained in a 10 repetition maximum (10RM) test. Therefore, chest press and peck-deck were performed with the same load during PRE and PS. Electromyography (EMG) was recorded from the triceps brachii (TB), anterior deltoids, and pectoralis major during both exercises. According to the results, TW and TR were not significantly different (p > 0.05) between PRE and PS. Likewise, during the peck-deck exercise, no significant (p > 0.05) EMG change was observed between PRE and PS order. However, TB activity was significantly (p < 0.05) higher when chest press was performed after the peck-deck exercise (PRE). Our findings suggest that performing pre-exhaustion exercise is no more effective in increasing the activation of the prefatigued muscles during the multi-joint exercise. Also, independent of the exercise order (PRE vs. PS), TW is similar when performing exercises for the same muscle group. In summary, if the coach wants to maximize the athlete performance in 1 specific resistance exercise, this exercise should be placed at the beginning of the training session.
This work presents a study on the influence of the aqueous environment on the surface EMG (sEMG) signal recorded in bipolar montage from the abductor pollicis brevis muscle, when only the forearm is immersed in water. Ten men, 30.1+/-4.0 (mean +/- SD) years old, performed ten 2-s 40% MVC isometric contractions of the abductor pollicis brevis muscle in two controlled environments (air and water, at a temperature of 32 degrees C). They were always equipped with electrodes protected with a waterproof adhesive tape. No significant variations (paired Wilcoxon test) due to the environments were observed in the median frequency of the power spectrum (MDF) and in the root mean square (RMS) value of the sEMG signal. These results allow us to assess the methodological criteria to properly record sEMG signals in water and provide the basis to explain different findings obtained by other authors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.