We have developed an evolutionary algorithm (EA) for the global minimum search of molecular clusters. The EA is able to discover all the putative global minima of water clusters up to (H(2)O)(20) and benzene clusters up to (C(6)H(6))(30). Then, the EA was applied to search for the global minima structures of (C(6)H(6))(n)(+) with n = 2-20, some of which were theoretically studied for the first time. Our results for n = 2-6 are consistent with previous theoretical work that uses a similar interaction potential. Excluding the very symmetric global minimum structure for n = 9, the growth pattern of (C(6)H(6))(n)(+) with n ≥ 7 involves the (C(6)H(6))(2)(+) dimer motif, which is placed off-center in the cluster. Such observation indicates that potentials commonly used in the literature for (C(6)H(6))(n)(+) cannot reproduce the icosahedral-type packing suggested by the available experimental data.
Statistical experimental designs were used to develop a medium based on corn steep liquor (CSL) and other low-cost nutrient sources for high-performance very high gravity (VHG) ethanol fermentations by Saccharomyces cerevisiae. The critical nutrients were initially selected according to a Plackett-Burman design and the optimized medium composition (44.3 g/L CSL; 2.3 g/L urea; 3.8 g/L MgSO₄·7H₂O; 0.03 g/L CuSO₄·5H₂O) for maximum ethanol production by the laboratory strain CEN.PK 113-7D was obtained by response surface methodology, based on a three-level four-factor Box-Behnken design. The optimization process resulted in significantly enhanced final ethanol titre, productivity and yeast viability in batch VHG fermentations (up to 330 g/L glucose) with CEN.PK113-7D and with industrial strain PE-2, which is used for bio-ethanol production in Brazil. Strain PE-2 was able to produce 18.6±0.5% (v/v) ethanol with a corresponding productivity of 2.4±0.1g/L/h. This study provides valuable insights into cost-effective nutritional supplementation of industrial fuel ethanol VHG fermentations.
The search of robust microorganisms is essential to design sustainable processes of second generation bioethanol. Yeast strains isolated from industrial environments are generally recognised to present an increased stress tolerance but no specific information is available on their tolerance towards inhibitors that come from the pretreatment of lignocellulosic materials. In this work, a strategy for the selection of different yeasts using hydrothermal hydrolysate from Eucalyptus globulus wood, containing different concentrations of inhibitors, was developed. Ten Saccharomyces cerevisiae and four Kluyveromyces marxianus strains isolated from industrial environments and four laboratory background strains were evaluated. Interestingly, a correlation between final ethanol titer and percentage of furfural detoxification was observed. The results presented here highlight industrial distillery environments as a remarkable source of efficient yeast strains for lignocellulosic fermentation processes. Selected strains were able to resourcefully degrade furfural and HMF inhibitors, producing 0.8g ethanol/Lh corresponding to 94% of the theoretical yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.