Synthetic genes for human insulin A and B chains were cloned separately in plasmid pBR322. The cloned synthetic genes were then fused to an Escherichia coli #-galactosidase gene to provide efficient transcription and translation and a stable precursor protein. The insulin peptides were cleaved from Pgalactosidase, detected by radioimmunoassay and purified. Complete purification of the A chain and partiaf purification of the B chain were achieved. These products were mixed, reduced, and reoxidized. The presence of insulin was detected by radioimmunoassay.Recently improved methods of DNA chemical synthesis, combined with recombinant DNA technology, permit the design and relatively rapid synthesis of modest-sized genes that can be incorporated into prokaryotic cells for gene expression. The feasibility of this general approach was first demonstrated by the synthesis, and expression in Escherichia col, of a gene for the mammalian peptide somatostatin (1).Following the precursor protein approach used for somatostatin (1), the experimental design for this work was such that the insulin peptide chains would be made in vio as short tails joined by a methionine to the end of ,3-galactosidase. After synthesis, the insulin chains, which contain no methionine, can be cleaved off efficiently by treatment with cyanogen bromide. We deliberately chose to construct two separate bacterial strains, one for each of the two peptide chains of insulin: the 21-amino-acid A chain and the 30-amino-acid B chain. In native insulin, the two chains are held together by two disulfide bonds, and methods have been available for years for joining the chains correctly, in vitro, by air oxidation (2). The efficiency of correct joining has been variable and often low. However, by using S-sulfonated derivatives and an excess of A chain, 50-80% correct joining has been obtained (3).The synthetic plan and chemical synthesis of the DNA fragments coding for the A and B chains of human insulin were described in a previous paper (4) and were summarized in Fig. 1 Enzymes and DNA Preparations. T4 DNA ligase and T4 polynucleotide kinase were purified as described (6). Restriction endonuclease EcoRI was purified by the procedure of Greene et al. (7); HindIII was purified by a method developed by D. Goeddel (unpublished). Restriction endonuclease BamHI was purchased from Bethesda Research (Rockville, MD); E. coli alkaline phosphatase was purchased from Worthington.Plasmids, including pBR322 (8), were isolated by a published procedure (9) with some modifications. The chemical synthesis of the deoxyoligonucleotides (figure 1 of ref. 4) has been described (4). Xplac5 DNA was isolated as described (10).The following reaction buffers were used: kinase buffer, 60 mM Tris-HCl, pH 8/15mM 2-mercaptoethanol/10 mM MgCl2; ligase buffer, 20mM Tris-HCl, pH 7.5/10mM dithiothreitol/10 mM MgCl2; BamHI buffer, 20 mM Tris-HCl, pH 7.5/7 mM MgCl2/2 mM 2-mercaptoethanol; EcoRI-HindIll buffer, BamHI buffer containing 50 mM NaCl; and phosphatase buffer, 50 mM Tris-HCl, pH...