Seabird rehabilitation is a valuable strategy to mitigate the impacts of oil pollution and other anthropogenic factors, and can significantly contribute to the conservation of penguins. However, infectious diseases such as avian malaria (Plasmodium spp.) can hamper the success of rehabilitation efforts. We combined morphological and molecular diagnostic methods to investigate the epidemiology and pathology of Plasmodium in Magellanic penguins (Spheniscus magellanicus) at rehabilitation centers along 2500 km of the coastline of Brazil. True prevalence of malarial parasites was estimated between 6.6% and 13.5%. We identified five species, three of which had not been described infecting penguins (P. cathemerium, P. nucleophilum, P. unalis); an additional five distinct Plasmodium lineages were also distinguished, and albeit unidentified these clearly correspond to species that also have not yet been reported in penguins. Our results indicate that the diversity of plasmodia that may infect these birds is greater than previously recognised. Considering the well-defined seasonality observed in this study, it is clear that rehabilitation centers could benefit by narrowing their preventative efforts on penguins maintained or admitted during the Austral spring-summer, particularly by preventing mosquitoes from coming into contact with penguins.Electronic supplementary materialThe online version of this article (doi:10.1186/s13567-015-0160-9) contains supplementary material, which is available to authorized users.
Avian malaria is a mosquito-borne disease caused by Plasmodium spp. Avian plasmodia are recognized conservation-threatening pathogens due to their potential to cause severe epizootics when introduced to bird populations with which they did not co-evolve. Penguins are considered particularly susceptible, as outbreaks in captive populations will often lead to high morbidity and rapid mortality. We used a multidisciplinary approach to investigate an outbreak of avian malaria in 28 Magellanic penguins (Spheniscus magellanicus) at a rehabilitation center during summer 2009 in Florianópolis, Brazil. Hemosporidian infections were identified by microscopic and molecular characterization in 64% (18/28) of the penguins, including Plasmodium (Haemamoeba) tejerai, Plasmodium (Huffia) elongatum, a Plasmodium (Haemamoeba) sp. lineage closely related to Plasmodium cathemerium, and a Haemoproteus (Parahaemoproteus) sp. lineage closely related to Haemoproteus syrnii. P. tejerai played a predominant role in the studied outbreak and was identified in 72% (13/18) of the hemosporidian-infected penguins, and in 89% (8/9) of the penguins that died, suggesting that this is a highly pathogenic parasite for penguins; a detailed description of tissue meronts and lesions is provided. Mixed infections were identified in three penguins, and involved P. elongatum and either P. tejerai or P. (Haemamoeba) sp. that were compatible with P. tejerai but could not be confirmed. In total, 32% (9/28) penguins died over the course of 16 days despite oral treatment with chloroquine followed by sulfadiazine-trimethoprim. Hemosporidian infections were considered likely to have occurred during rehabilitation, probably from mosquitoes infected while feeding on local native birds, whereas penguin-mosquito-penguin transmission may have played a role in later stages of the outbreak. Considering the seasonality of the infection, rehabilitation centers would benefit from narrowing their efforts to prevent avian malaria outbreaks to the penguins that are maintained throughout summer.
Aim: Macroecological analyses provide valuable insights into factors that influence how parasites are distributed across space and among hosts. Amid large uncertainties that arise when generalizing from local and regional findings, hierarchical approaches applied to global datasets are required to determine whether drivers of parasite infection patterns vary across scales. We assessed global patterns of haemosporidian infections across a broad diversity of avian host clades and zoogeographical realms to depict hotspots of prevalence and to identify possible underlying drivers.
HighlightsWe examined blood smears from 263 wild little penguins in southeastern Australia.Babesia sp. was detected in penguins in New South Wales, Victoria and Tasmania.True prevalence is estimated between 3.4% and 4.5%.Babesia sp. from little penguins is closely related to B. poelea and B. uriae.Babesia infections were assymptomatic.
Habitat modification may change vertebrate and vector-borne disease distributions. However, natural forest regeneration through secondary succession may mitigate these effects. Here we tested the hypothesis that secondary succession influences the distribution of birds and their haemosporidian parasites (genera Plasmodium and Haemoproteus) in a seasonally dry tropical forest, a globally threatened ecosystem, in Brazil. Moreover, we assessed seasonal fluctuations in parasite prevalence and distribution. We sampled birds in four different successional stages at the peak and end of the rainy season, as well as in the middle and at the end of the dry season. A non-metric multidimensional scaling analysis revealed that bird communities in the pasture (i.e., highly modified) areas were different from those in the early, intermediate, and late successional areas (secondary forests). Among 461 individual birds, haemosporidian prevalence was higher in pasture areas than in the more advanced successional stages, but parasite communities were homogeneous across these areas. Parasite prevalence was higher in pasture-specialists birds (resilient species) than in forest-specialists species, suggesting that pasture-specialists may increase infection risk for co-occurring hosts. We found an increase in prevalence between the middle and end of the dry season, a period associated with the beginning of the breeding season (early spring) in southeastern Brazil. We also found effects of seasonality in the relative prevalence of specific parasite lineages. Our results show that natural forest recovery through secondary succession in SDTFs is associated with compositional differences in avian communities, and that advanced successional stages are associated with lower prevalence of avian haemosporidian parasites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.