A cross-sectional study of serum zinc (Zn) and copper (Cu) levels in 31 healthy pregnant women and 51 healthy, nonpregnant controls living in the Mediterranean area of Granada, Spain, was performed. The subjects were divided into two groups: Group A, consisted of pregnant women in three categories according to the trimester of pregnancy, and Group B consisted of nonpregnant women acting as controls. In pregnant women, serum Zn levels were found from 0.300-1.340 mg/L and serum Cu from 0.936-2.304 mg/L, whereas in the nonpregnant women group, the mean serum levels were 0.947+/-0.265 mg/L for Zn and 1.092+/-0.365 mg/L for Cu. Serum Zn progressively decreased with gestation. Mean Zn levels were 0.829+/-0.253, 0.846+/-0.329, and 0.620+/-0.142 mg/L, corresponding to the first, second, and third trimesters of pregnancy, respectively. Serum Zn concentrations were significantly lower in pregnant women as compared to controls: 0.712+/-0.236 mg/L vs 0.947+/-0.265 mg/L, respectively (p < 0.05). In contrast, Cu levels increased with period of gestation from 1.053+/-0.498 mg/L in the first trimester to 1.616+/-0.304 mg/L in the second and 1.689+/-0.344 mg/L in the third. Serum Cu levels in the second and third trimesters of pregnancy were significantly higher (p < 0.05) than those determined during the first trimester and for nonpregnant controls. Both Zn and Cu during pregnancy did not appear to be dependent on the subject's age (p > 0.05).
The zinc content of 300 food and 79 beverage samples was determined using flame atomic absorption spectrometry. Sample recoveries, repeatability, and analyses of NIST and CBR-CEC reference materials demonstrated the reliability and accuracy of this technique. Mean zinc concentrations varied from 0.02 microg/ml in fresh water to 71.0 microg/g (fresh weight) in pork liver. The daily dietary intake of zinc for inhabitants of southeastern Spain was estimated to be 10.1 mg (5.5, 4.0, 0.5, and 0.1 mg Zn/day per person from foods of animal and vegetable origin, drinks, and other foods, respectively). Zinc levels found in high protein foods (meat, fish, milk products, eggs, dry fruits, cereals and legumes) were significantly higher than those found in food with a low protein content (vegetables, fruits and drinks) (p < 0.001). A significant linear correlation between zinc levels and the corresponding protein content of cereals, legumes and dry fruits was found (r = 0.754, p < 0.005). Zinc concentrations in milk samples were significantly modified by the thermal treatment (p < 0.001), and the skimming (p < 0.05) and calcium enrichment processes (p < 0.001). Shellfish zinc levels were also significantly higher than those measured in fish (p < 0.05). Mean zinc concentrations found in cheese were statistically higher than those determined in the remaining milk products (p < 0.001). Zinc levels measured in distilled beverages were also statistically lower than those found in fermented ones (p < 0.001).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.