The gut microbiota is increasingly recognized as an important regulator of host immunity and brain health. The aging process yields dramatic alterations in the microbiota, which is linked to poorer health and frailty in elderly populations. However, there is limited evidence for a mechanistic role of the gut microbiota in brain health and neuroimmunity during aging processes. Therefore, we conducted fecal microbiota transplantation from either young (3-4 months) or old (19-20 months) donor mice into aged recipient mice (19-20 months). Transplant of a microbiota from young donors reversed agingassociated differences in peripheral and brain immunity, as well as the hippocampal metabolome and transcriptome of aging recipient mice. Finally, the young donor-derived microbiota attenuated selective age-associated impairments in cognitive behavior when transplanted into an aged host. Our results reveal that the microbiome may be a suitable therapeutic target to promote healthy aging.Aging triggers metabolic and immune alterations that lead to perturbation of brain function and behavior, including impairments in hippocampal-associated cognitive behavior 1 . Notably, the gut microbiota, encompassing the population of trillions of microorganisms, undergoes a parallel community shift, which has been correlated to changes in host frailty and cognition 2,3 .Animal models have shown specific roles for the microbiota in shaping hallmarks of aging in the gut 4,5 . Moreover, the consequences of an elderly-associated microbiota on a young host involve alterations in host immunity, neurogenesis and cognition [6][7][8][9] . Notably, transferring microbiota from young fish (African turquoise killifish) into middle-aged fish improves lifespan and motor behavior 10 . However, it is completely unknown whether microbiota from young donors can restore aging-associated impairments in mammals.To determine whether fecal microbiota transplantation (FMT) from young mice can ameliorate aging-induced neurocognitive and immune impairments, we collected fecal microbiota from naive young mice (3-4 months) and transplanted this into aged mice ('aged yFMT' , 19-20 months). A separate group of aged mice received fecal microbiota from naive old mice to control for handling during FMT administration ('aged oFMT' ,(19)(20). To allow aging-associated comparisons, naive young mice received the same yFMT mixture ('young yFMT'). We found aging-associated differences in microbiota (Fig. 1 and Supplementary Tables 1 and 2), immunity (Fig. 2 and Extended Data Figs. 2 and 3), hippocampal neurogenesis (Extended Data Fig. 2), hippocampal metabolomics (Fig. 3, Extended Data Fig. 7 and Supplementary Table 3) and transcriptomics (Fig. 2 and Extended Data Fig. 7), and behavior (Fig. 4 and Extended Data Fig. 5); some, but not all, of which were attenuated by microbiota transplantation from a young mouse into an aged host. Our research offers the possibility that a microbiota from a young individual may have beneficial effects when given to an aged host.
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.How do ICP variants perform when used for scan matching terrain point clouds? cost. The main finding of the paper is that none of the variants is simultaneously accurate, precise, and fast to compute, across all three scenes. The best performing variants employed strategies that filtered the data sets, used local surface geometry in the form normals, and used the distance between points in one point cloud to a corresponding surface from a reference point cloud as a measure of the fit between two point clouds. The significance of this work is that it: (i) provides guidance in the construction of ICP variants for terrain mapping; and (ii) identifies the significant limitations of existing ICP variants for this application.
Depression is considered a major public health concern, where existing pharmacological treatments are not equally effective across all patients. The pathogenesis of depression involves the interaction of complex biological components, such as the immune system and the microbiota-gut-brain axis. Adjunctive lifestyle-oriented approaches for depression, including physical exercise and special diets are promising therapeutic options when combined with traditional antidepressants. However, the mechanisms of action of these strategies are incompletely understood. Accumulating evidence suggests that physical exercise and specific dietary regimens can modulate both the immune system and gut microbiota composition. Here, we review the current information about the strategies to alleviate depression and their crosstalk with both inflammatory mechanisms and the gut microbiome. We further discuss the role of the microbiota-gut-brain axis as a possible mediator for the adjunctive therapies for depression through inflammatory mechanisms. Finally, we review existing and future adjunctive strategies to manipulate the gut microbiota with potential use for depression, including physical exercise, dietary interventions, prebiotics/probiotics, and fecal microbiota transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.