BackgroundThere is a high prevalence of vitamin D insufficiency in women of reproductive age.MethodsThis work studied the first two generations of offspring (F1 and F2) of Swiss mice from mothers fed one of two diets: SC (standard chow) or VitD- (vitamin D-deficient). Functional and developmental kidney measurements were taken.ResultsThe first two generations of the VitD- group had higher blood pressure at 6 months of age than the offspring of the SC group as well as an increase in renin and AT1r expression. However, at all ages, both F1 and F2 VitD- mice had shorter glomerular diameters, and diet played a significant role in the total variation. Both the F1 and F2 generations of the VitD- group had more immature glomeruli than offspring from the SC group. Immature glomeruli begin to disappear at 10 days, but at this age, F1-VitD- mice had more immature and mature glomeruli than F1-SC mice. At 6 months of age, F1-VitD- mice exhibited more glomeruli, while F2-VitD- mice exhibited the same number of glomeruli as F2-SC mice, but fewer glomeruli compared to the F1-VitD group. Both diet and generation account for the total variation in the number of glomeruli. Decreases in urine output and podocin expression and increases in urea and creatinine in the urine were observed in F1 offspring.ConclusionThese findings demonstrate that maternal vitamin D deficiency accompanies changes in the renal expression of important factors that may retard the maturation of glomeruli by extending the period of nephrogenesis.
In ovariectomized SHR, exercise training exerts beneficial effects diminishing adverse cardiac and aortic wall remodeling, mainly by reducing interstitial myocardial fibrosis, improving myocardial vascularization, and sustaining the number of cardiomyocytes.
SummaryThis study aimed to investigate the effects of maternal vitamin D restriction on carbohydrate metabolism and alterations in the pancreas and liver in the F1 and F2 generations. Therefore, we studied the first two generations of offspring (F1 and F2) of Swiss mice from mothers fed one of two diets: SC (standard chow) or VitD 2 (vitamin D-deficient). Biometric, biochemical and molecular analyses were performed. The VitD-F1 mice had greater body mass (BM) than the SC-F1 mice. The BM changes were accompanied by increased insulin secretion. The VitD-F1 mice had a higher area under the curve in the oral glucose tolerance test and exhibited larger islet diameters than the SC-F1 mice. In addition, the VitD-F1 mice showed marked diffuse hepatic steatosis and higher expression of fatty acid synthase (FAS) protein than the SC animals in either generation or the ViD-F2 mice. Diet accounted for a greater fraction of the total variation for BM, fat pad mass and insulin secretion than generation. Both diet and generation contributed to the variation in steatosis in the liver, islet diameter and expression of FAS. However, interactions between diet and generation were observed only for insulin secretion, steatosis in the liver and FAS expression. In conclusion, these results provide compelling evidence that maternal vitamin D restriction affects the development of the offspring and leads to metabolic alterations accompanied by structural alterations in the liver and pancreas, especially in the F1 generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.