Hippocampal theta rhythm is thought to underlie learning and memory, and it is well established that ''pacemaker'' neurons in medial septum (MS) modulate theta activity. Recent studies in the rat demonstrated that brainstem-generated theta rhythm occurs through a multisynaptic pathway via the nucleus incertus (NI), which is the primary source of the neuropeptide relaxin-3 (RLN3). Therefore, this study examined the possible contribution of RLN3 to MS activity, and associated hippocampal theta activity and spatial memory. In anesthetized and conscious rats, we identified the ability of intraseptal RLN3 signaling to modulate neuronal activity in the MS and hippocampus and promote hippocampal theta rhythm. Behavioral studies in a spontaneous alternation task indicated that endogenous RLN3 signaling within MS promoted spatial memory and exploratory activity significantly increased c-Fos immunoreactivity in RLN3-producing NI neurons. Anatomical studies demonstrated axons/terminals from NI/RLN3 neurons make close contact with septal GABAergic (and cholinergic) neurons, including those that project to the hippocampus. In summary, RLN3 neurons of the NI can modulate spatial memory and underlying hippocampal theta activity through axonal projections to pacemaker neurons of the MS. NI/RLN3 neurons are highly responsive to stress and express corticotropin-releasing factor type-1 receptors, suggesting that the effects observed could be an important component of memory processing associated with stress responses.
Key points• The nucleus incertus (NI) is a stress and arousal responsive, hindbrain region involved in ascending control of septohippocampal theta rhythm.• NI neurons express high levels of the neuropeptide relaxin-3 and corticotrophin-releasing factor (CRF) receptor-1 (CRF-R1).• We report the first in-depth characterization of NI neurons, using in vivo and in vitro electrophysiological techniques, which reveal a population of relaxin-3-containing NI neurons activated by CRF via postsynaptic CRF-R1 and a non-relaxin-3 neuron population inhibited or unaffected by CRF.• Relaxin-3 NI neurons exhibit strong phase-locked firing with the ascending phase of hippocampal theta oscillations.• These findings suggest the NI is a heterogeneous neuronal population and key site of CRF action with the capacity to modulate cognition in response to stress.Abstract The nucleus incertus (NI) of the rat hindbrain is a putative node in the ascending control of the septohippocampal system and hippocampal theta rhythm and is stress and arousal responsive. NI contains GABA neurons that express multiple neuropeptides, including relaxin-3 (RLN3) and neuropeptide receptors, including corticotrophin-releasing factor receptor-1 (CRF-R1), but the precise anatomical and physiological characteristics of NI neurons are unclear. Therefore, we examined the firing properties of NI neurons and their responses to CRF, the correlation of these responses with occurrence of relaxin-3, and NI neuron morphology in the rat. Most NI neurons excited by intracerebroventricular CRF infusion were RLN3-positive (9 of 10), whereas all inhibited cells were RLN3-negative (8 of 8). The spontaneous firing of RLN3 (n = 6) but not non-RLN3 neurons (n = 6) was strongly modulated and phase-locked with the initial ascending phase of hippocampal theta oscillations. In brain slices, the majority of recorded NI neurons (15 of 19) displayed excitatory responses to CRF, which uniformly increased action potential frequency and membrane potential depolarization in the presence of tetrodotoxin, indicating a direct, postsynaptic action of CRF on NI neurons. This excitation was associated with reduction in the slow component of afterhyperpolarization and a strong depolarization. Quantitative analysis in naïve rats of validated CRF-R1, RLN3 and neuronal nuclear antigen (NeuN) immunoreactivity revealed 52% of NI neurons as CRF-R1 positive, of which 53% were RLN3 positive, while 48% of NI neurons lacked CRF-R1 and RLN3. All RLN3 neurons expressed CRF-R1. CRF neurons that projected to the NI were identified in lateral preoptic hypothalamus, but not in paraventricular hypothalamus, bed nucleus of stria terminalis or central amygdala. Our findings suggest NI is an important site for CRF modulation of hippocampal theta rhythm via effects on GABA/RLN3 transmission.
The hippocampal theta rhythm is generated by the pacemaker activity of the medial septum-diagonal band of Broca (MS/DBB) neurons. These nuclei are influenced by brainstem structures that modulate the theta rhythm. The aim of the present work is to determine whether the nucleus incertus (NI), which has important anatomical connections with the MS/DBB, contributes to the hippocampal theta rhythm generation in rats. Hippocampal field activity was recorded in urethane-anaesthetized rats. Electrical stimulation of the NI not only evoked theta rhythm in the hippocampus, but also decreased the amplitude of delta waves. Unit recordings in the NI revealed either a non-rhythm discharge pattern in most neurons (76%), or a rhythm activity at 13-25 Hz in the remaining neurons. The firing rate of these neurons increased during the presence of theta rhythm evoked by either sensory or reticularis pontis oralis nucleus (RPO) stimulation. Electrolytic lesions of NI, or the microinjection of the gamma-aminobutyric acid (GABA)A agonist muscimol, abolished the theta rhythm evoked by RPO stimulation. Consequently, the NI may be a relay station between brainstem structures and the MS/DBB in the control of the hippocampal theta rhythm generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.