Continuous diagnostic tests are often used for discriminating between healthy and diseased populations. For the clinical application of such tests, it is useful to select a cutpoint or discrimination value c that defines positive and negative test results. In general, individuals with a diagnostic test value of c or higher are classified as diseased. Several search strategies have been proposed for choosing optimal cutpoints in diagnostic tests, depending on the underlying reason for this choice. This paper introduces an R package, known as OptimalCutpoints, for selecting optimal cutpoints in diagnostic tests. It incorporates criteria that take the costs of the different diagnostic decisions into account, as well as the prevalence of the target disease and several methods based on measures of diagnostic test accuracy. Moreover, it enables optimal levels to be calculated according to levels of given (categorical) covariates. While the numerical output includes the optimal cutpoint values and associated accuracy measures with their confidence intervals, the graphical output includes the receiver operating characteristic (ROC) and predictive ROC curves. An illustration of the use of OptimalCutpoints is provided, using a real biomedical dataset.
Background
The prognosis of patients with Covid-19 infection is uncertain. We derived and validated a new risk model for predicting progression to disease severity, hospitalization, admission to intensive care unit (ICU) and mortality in patients with Covid-19 infection (Gal-Covid-19 scores).
Methods
This is a retrospective cohort study of patients with Covid-19 infection confirmed by reverse transcription polymerase chain reaction (RT-PCR) in Galicia, Spain. Data were extracted from electronic health records of patients, including age, sex and comorbidities according to International Classification of Primary Care codes (ICPC-2). Logistic regression models were used to estimate the probability of disease severity. Calibration and discrimination were evaluated to assess model performance.
Results
The incidence of infection was 0.39% (10 454 patients). A total of 2492 patients (23.8%) required hospitalization, 284 (2.7%) were admitted to the ICU and 544 (5.2%) died. The variables included in the models to predict severity included age, gender and chronic comorbidities such as cardiovascular disease, diabetes, obesity, hypertension, chronic obstructive pulmonary disease, asthma, liver disease, chronic kidney disease and haematological cancer. The models demonstrated a fair–good fit for predicting hospitalization {AUC [area under the receiver operating characteristics (ROC) curve] 0.77 [95% confidence interval (CI) 0.76, 0.78]}, admission to ICU [AUC 0.83 (95%CI 0.81, 0.85)] and death [AUC 0.89 (95%CI 0.88, 0.90)].
Conclusions
The Gal-Covid-19 scores provide risk estimates for predicting severity in Covid-19 patients. The ability to predict disease severity may help clinicians prioritize high-risk patients and facilitate the decision making of health authorities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.