Abstract. The Decadal Climate Prediction Project (DCPP) is a coordinated multi-model investigation into decadal climate prediction, predictability, and variability. The DCPP makes use of past experience in simulating and predicting decadal variability and forced climate change gained from the fifth Coupled Model Intercomparison Project (CMIP5) and elsewhere. It builds on recent improvements in models, in the reanalysis of climate data, in methods of initialization and ensemble generation, and in data treatment and analysis to propose an extended comprehensive decadal prediction investigation as a contribution to CMIP6 (Eyring et al
Quantifying signals and uncertainties in climate models is essential for climate change detection, attribution, prediction and projection [1][2][3] . Although inter-model agreement is high for large-scale temperature signals, dynamical changes in atmospheric circulation are very uncertain 4 , leading to low confidence in regional projections especially for precipitation over the coming decades 5, 6 . Furthermore, model simulations with tiny differences in initial conditions suggest that uncertainties may be largely irreducible due to the chaotic nature of the climate system 7-9 . However, climate projections are difficult to verify until further observations become available. Here we assess retrospective climate predictions of the last six decades project (GA 776613). FJDR, LPC, SW and RB also acknowledge the support from the EUCP project (GA 776613) and from the Ministerio de Economía y Competitividad (MINECO) as part of the CLINSA project (Grant No. CGL2017-85791-R). SW received funding from the innovation programme under the Marie Skĺodowska-Curie grant agreement H2020-MSCA-COFUND-2016-754433 and PO from the Ramon y Cajal senior tenure programme of MINECO. The EC-Earth simulations were performed on Marenostrum 4 (hosted by the Barcelona Supercomputing Center, Spain) using Auto-Submit through computing hours
There is a growing need for skilful predictions of climate up to a decade ahead. Decadal climate predictions show high skill for surface temperature, but confidence in forecasts of precipitation and atmospheric circulation is much lower. Recent advances in seasonal and annual prediction show that the signal-to-noise ratio can be too small in climate models, requiring a very large ensemble to extract the predictable signal. Here, we reassess decadal prediction skill using a much larger ensemble than previously available, and reveal significant skill for precipitation over land and atmospheric circulation, in addition to surface temperature. We further propose a more powerful approach than used previously to evaluate the benefit of initialisation with observations, improving our understanding of the sources of skill. Our results show that decadal climate is more predictable than previously thought and will aid society to prepare for, and adapt to, ongoing climate variability and change.npj Climate and Atmospheric Science (2019)2:13 ; https://doi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.