The Bitcoin protocol prescribes certain behavior by the miners who are responsible for maintaining and extending the underlying blockchain; in particular, miners who successfully solve a puzzle, and hence can extend the chain by a block, are supposed to release that block immediately. Eyal and Sirer showed, however, that a selfish miner is incentivized to deviate from the protocol and withhold its blocks under certain conditions. The analysis by Eyal and Sirer, as well as in followup work, considers a single deviating miner (who may control a large fraction of the hashing power in the network) interacting with a remaining pool of honest miners. Here, we extend this analysis to the case where there are multiple (non-colluding) selfish miners. We find that with multiple strategic miners, specific deviations from honest mining by multiple strategic agents can outperform honest mining, even if individually miners would not be incentivised to be dishonest. This previous point effectively renders the Bitcoin protocol to be less secure than previously thought.
This paper addresses the computational challenges of learning strong substitutes demand when given access to a demand (or valuation) oracle. Strong substitutes demand generalises the well-studied gross substitutes demand to a multi-unit setting. Recent work by Baldwin and Klemperer shows that any such demand can be expressed in a natural way as a finite list of weighted bid vectors. A simplified version of this bidding language has been used by the Bank of England.Assuming access to a demand oracle, we provide an algorithm that computes the unique list of weighted bid vectors corresponding to a bidder's demand preferences. In the special case where their demand can be expressed using positive bids only, we have an efficient algorithm that learns this list in linear time. We also show super-polynomial lower bounds on the query complexity of computing the list of bids in the general case where bids may be positive and negative. Our algorithms constitute the first systematic approach for bidders to construct a bid list corresponding to non-trivial demand, allowing them to participate in 'product-mix' auctions.CCS Concepts: • Theory of computation → Computational pricing and auctions; Algorithmic mechanism design.
We investigate the problem of equilibrium computation for "large" nplayer games. Large games have a Lipschitz-type property that no single player's utility is greatly affected by any other individual player's actions. In this paper, we mostly focus on the case where any change of strategy by a player causes other players' payoffs to change by at most 1 n . We study algorithms having query access to the game's payoff function, aiming to find ε-Nash equilibria. We seek algorithms that obtain ε as small as possible, in time polynomial in n. Our main result is a randomised algorithm that achieves ε approaching 1 8 for 2-strategy games in a completely uncoupled setting, where each player observes her own payoff to a query, and adjusts her behaviour independently of other players' payoffs/actions. O(log n) rounds/queries are required. We also show how to obtain a slight improvement over 1 8 , by introducing a small amount of communication between the players. Finally, we give extension of our results to large games with more than two strategies per player, and alternative largeness parameters.
Suppose that an m -simplex is partitioned into n convex regions having disjoint interiors and distinct labels, and we may learn the label of any point by querying it. The learning objective is to know, for any point in the simplex, a label that occurs within some distance ε from that point. We present two algorithms for this task: Constant-Dimension Generalised Binary Search (CD-GBS), which for constant m uses poly( n , log (1/ε)) queries, and Constant-Region Generalised Binary Search (CR-GBS), which uses CD-GBS as a subroutine and for constant n uses poly( m , log (1/ε)) queries. We show via Kakutani’s fixed-point theorem that these algorithms provide bounds on the best-response query complexity of computing approximate well-supported equilibria of bimatrix games in which one of the players has a constant number of pure strategies. We also partially extend our results to games with multiple players, establishing further query complexity bounds for computing approximate well-supported equilibria in this setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.