We studied the efficiency of two different schemes for a quantum heat engine, by considering a single Dirac particle trapped in an infinite one-dimensional potential well as the "working substance." The first scheme is a cycle, composed of two adiabatic and two isoenergetic reversible trajectories in configuration space. The trajectories are driven by a quasistatic deformation of the potential well due to an external applied force. The second scheme is a variant of the former, where isoenergetic trajectories are replaced by isothermal ones, along which the system is in contact with macroscopic thermostats. This second scheme constitutes a quantum analog of the classical Carnot cycle. Our expressions, as obtained from the Dirac single-particle spectrum, converge in the nonrelativistic limit to some of the existing results in the literature for the Schrödinger spectrum.
We studied the efficiency of two different schemes for a magnetically driven quantum heat engine, by considering as the "working substance" a single non-relativistic particle trapped in a cylindrical potential well, in the presence of an external magnetic field. The first scheme is a cycle, composed of two adiabatic and two iso-energetic reversible trajectories in configuration space. The trajectories are driven by a quasi-static modulation of the external magnetic field intensity. The second scheme is a variant of the former, where the iso-energetic trajectories are replaced by isothermal ones, along which the system is in contact with macroscopic thermostats. This second scheme constitutes a quantum analogue of the classical Carnot cycle.
We propose an alternative conceptual design for a graphene-based quantum engine, driven by a superposition of mechanical strain and an external magnetic field. Engineering of strain in a nanoscale graphene flake creates a gauge field with an associated uniform pseudomagnetic field. The strain-induced pseudomagnetic field can be combined with a real magnetic field, leading to the emergence of discrete relativistic Landau levels within the single-particle picture. The interlevel distance and hence their statistical population can be modulated by quasistatically tuning the magnetic field along a sequence of reversible transformations that constitute a quantum mechanical analog of the classical Otto cycle.
At low-temperatures a gas of bosons will undergo a phase transition into a quantum state of matter known as a Bose-Einstein condensate (BEC), in which a large fraction of the particles will occupy the ground state simultaneously. Here we explore the performance of an endoreversible Otto cycle operating with a harmonically confined Bose gas as the working medium. We analyze the engine operation in three regimes, with the working medium in the BEC phase, in the gas phase, and driven across the BEC transition during each cycle. We find that the unique properties of the BEC phase allow for enhanced engine performance, including increased power output and higher efficiency at maximum power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.