We analyzed the phylogenetic and time-space relationships (phylodynamics) of 181 isolates of vesicular stomatitis New Jersey virus (VSNJV) causing disease in Mexico and the United States (US) from 2005 through 2012. We detail the emergence of a genetic lineage in southern Mexico causing outbreaks in central Mexico spreading into northern Mexico and eventually into the US. That emerging lineage showed higher nucleotide sequence identity (99.5%) than that observed for multiple lineages circulating concurrently in southern Mexico (96.8%). Additionally, we identified 58 isolates from Mexico that, unlike previous isolates from Mexico, grouped with northern Central America clade II viruses. This study provides the first direct evidence for the emergence and northward migration of a specific VSNJV genetic lineage from endemic areas in Mexico causing VS outbreaks in the US. In addition we document the emergence of a Central American VSNJV genetic lineage moving northward and causing outbreaks in central Mexico.
Effects of vanadium pentoxide (V2O5) treatment on reproductive function and testicular DNA in male mice were investigated. These functions were evaluated with fertility rate, implants, resorptions, sperm counts, motility, and morphology. The DNA damage in individual testis cells was analyzed by single‐cell gel electrophoresis technique (COMET assay). V2O5 treatment resulted in a decrease in fertility rate, implantations, live fetuses, and fetal weight, and an increase in the number of resorptions/dam. Sperm count, motility, and morphology were impaired with the advancement of treatment. Vanadium treatment induced DNA damage depending on the dose in the testis cells that was expressed and detected as DNA migration in the COMET assay. The distribution of DNA migration among cells, a function of dose, revealed that the majority of cells of treated animals expressed more DNA damage than cells from control animals. It is concluded that vanadium pentoxide was a reprotoxic and genotoxic agent in mice. © 1996 Wiley‐Liss, Inc.
Bovine viral diarrhea virus (BVDV) infects cattle populations worldwide, causing significant economic losses though its impact on animal health. Previous studies have reported the prevalence of BVDV species and subgenotypes in cattle from the United States and Canada. We investigated the genetic diversity of BVDV strains detected in bovine serum samples from 6 different Mexican regions. Sixty-two BVDV isolates from Mexico were genetically typed based on comparison of sequences from the 5' untranslated region (5'-UTR) of the viral genome. Phylogenetic reconstruction indicated that 60 of the samples belonged to the BVDV-1 genotype and 2 to the BVDV-2 genotype. Comparison of partial 5'-UTR sequences clustered 49 samples within BVDV-1c, 8 samples within BVDV-1a, 3 samples within BVDV-1b, and 2 samples clustered with the BVDV-2a subgenotypes. Our study, combined with information previously published on BVDV field strain diversity in the United States and Canada, benefits the development of effective detection assays, vaccines, and control programs for North America.
Brucellosis is an infectious disease that affects practically all species of mammals, including human, and is a major zoonosis worldwide. Brucella spp. are facultative intracellular pathogens that have the ability to survive and multiply in phagocytic and nonphagocytic cells such as trophoblast and epithelial cells. Among the six recognized species of the genus Brucella, Brucella melitensis is the main etiological agent involved in goat brucellosis and is also the most pathogenic for human. It causes significant losses in livestock production as a result of abortions, metritis, infertility, and birth of weak animals. Outer membrane proteins (OMPs) are exposed on the bacterial surface and are in contact with cells and effectors of the host immune response, whereby they could be important virulence factors of Brucella species. To evaluate this hypothesis, the gene encoding for the major outer membrane protein Omp31 was amplified, cloned into pUC18 plasmid, and inactivated by inserting a kanamycin cassette, rendering pLVM31 plasmid which was transformed into B. melitensis wild-type strain to obtain LVM31 mutant strain. The Outer membrane (OM) properties of the mutant strain were compared with B. melitensis Bm133 wild-type and B. melitensis Rev1 vaccine strains, in assessing its susceptibility to polymyxin B, sodium deoxycholate, and nonimmune serum. The mutant strain was assessed in vitro with survival assays in murine macrophages J774.A1 and HeLa cells. Our results demonstrate that LVM31 mutant is more susceptible to polymyxin B, sodium deoxycholate, and nonimmune serum than control strains; moreover, Omp31 mutation caused a decrease in the internalization and a significant decrease in the intracellular survival compared with the reference strains in both cell lines. These results allow us to conclude that Omp31 is important for maintaining OM integrity, but also it is necessary for bacterial internalization, establishment and development of an optimal replication niche, and essential for survival and intracellular multiplication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.